
Solvent Effect of Excited-State Intramolecular Proton Transfer (ESIPT) of 2-(2-

Hydroxyphenyl)-benzothiazole (HBT) derivatives: A Combined Experimental and 

Theoretical Study 

Excited state intramolecular proton transfer (ESIPT) process is one of the most important 

reactions in photochemistry and photobiology.1-2 ESIPT occurs in bifunctional organic molecules 

having intramolecular hydrogen bond (intra-HB) connected by proton donor (-OH, -NH2) and 

proton acceptor (=N-, -C=O) moieties. Upon photoexcitation, the proton transfer is triggered due 

to the charge redistribution of both proton donor and acceptor moieties, resulting in forming 

tautomer which is structurally different from the normal form. The tautomer is not electronically 

stable in the excited state (S1), thus emitting the fluorescent with remarkable stokes shift before 

going down to give the ground state (S0) and then normal form. The large stokes shift of ESIPT 

molecules can be applied in fluorescent probes, luminescent materials and hole transporting 

materials.3-4 Moreover, the ESIPT process could be affected by an intermolecular-HB with protic 

solvent molecules. Thus, the emission characteristics of ESIPT molecules are expected to be 

solvation dependent particularly with protic solvents. The aim of this work to understand the effect 

of different solvation of 2-(2-Hydroxyphenyl)-benzothiazole (HBT) derivatives on electronic 

properties. 
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Scheme 1. The schematic for derivatives formula of HBT. 

 

 



Experimental and computational details 

All compounds (as shown in Scheme 1) will be synthesized according to the protocols used 

in many works.3-7 Electronic absorption (UV-Vis) and steady state fluorescence spectra will be 

analyzed at room temperature. To obtain desirable absorption spectra, a quartz cell with optical 

path of 10 mm will be used for our measurement. For influence of solvation, all compounds will 

be prepared in solutions as methanol (MeOH), tetrahydrofuran (THF), dimethylformamide 

(DMF), methylene dichloride (MC), and toluene with concentration in range 10-5-10-4 mol L-1.8 

Moreover, fluorescence quantum yields will be also analyzed in a standard solution. 

All calculations based on density functional theory (DFT) will be carried out using the 

Gassian09 program suit9. The self-consistent field (SCF) calculations in ground state, the three-

parameter hybrid functional of Becke with the correlation functional of Lee, Yang and Parr 

(B3LYP)10-13 with the triple-ζ valence quality with one of polarization functions (TZVP)14-15 basis 

set will be used to optimize for all compounds. Optimized structures were confirmed to be global 

minima on the potential energy surfaces by vibrational calculations without any imaginary 

frequency. The optimized structures will be further used to calculate the single point of the 

electronic properties. 

Vertical excitation energies will be performed using time-dependent density functional 

theory (TD-DFT)16-18 both in the ground (S0) and the first excited (S1) geometries using 

B3LYP/TZVP level to give absorption and emission spectra, respectively. All optimized structures 

will be calculated in gas phase as well as in different solvents within the PCM framework19 which 

are MeOH, THF, DMF, MC, and toluene. The dipole length representation will be employed to 

calculate oscillator strengths which are dependent of solvents. Moreover, the molecular orbitals 

will be also analyzed to visualize electron density distributions. 
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