Real-space dynamical mean-field theory
approach to the Hubbard model on finite
honeycomb lattices

Models of correlated electrons on the honeycomb lattice are currently under intense
theoretical and experimental investigation. One motivation is certainly the discovery of
graphene that won the 2010 Nobel prize in physics. This realization of the Dirac physics
on the honeycomb lattice is not only exciting from a fundamental point of view, but
owing to the many unusual properties of this one-atom thin layer of carbon atoms bears
also great promise for applications (see, e.g., [1—4]). One key feature is the existence of
gapless edge states in the non-interacting system that give rise to a magnetic instability
in the presence of interactions [5-9]. The typical tool used in this context is a mean-field
decoupling of the Hubbard model [5—9]. While this mean-field decoupling is surprisingly
accurate for certain quantities including dynamic ones [7, 9], the mean-field results
for the stability range of the semi-metallic region at weak coupling [10] are known to
underestimate its value as obtained by more accurate numerical methods [11-14].

During the one-month visit of Thomas Pruschke we plan to investigate if inclusion
of dynamical fluctuations in the framework of dynamical mean-field theory (DMFT) [15]
improves the accuracy the approximation, in particutar for dynamical quantities. To
be precise, we plan to employ a real-space version of DMFT (see, e.g., [16]) with
the numerical renormalization group (NRG) [17] as solver for the associated impurity
problem. The concrete problems that we plan to study include hexagonal “dots” as well
as nanoribbons with zig-zag edges.

Thomas Pruschke is an internationally recognized expert on DMFT and its cluster
generalizations [18] as well as the NRG [19]. In particular, we plan to use his NRG
program. The one-month stay of Thomas Pruschke at the Université de Cergy-Pontoise
is therefore essential to the success of the project.
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