Introduction to quantum feedback control

CY-McGill Mathematical Physics Weekly Seminar

Weichao LIANG

weichao.liang@u-cergy.fr

Lab AGM/Dpt mathématiques, CY Cergy Paris Université

October 15, 2020

Outline

1 Quantum probability theory

2 Quantum stochastic process : Wiener and Poisson processes

Quantum probability theory

Quantum probability theory

References:

- L. Bouten, R. van Handel, M. James, "An introduction to quantum filtering", SIAM. J. Control Optim, 2007.
- R. van Handel, "Filtering, stability, and robustness", Ph.D. Thesis, 2007.
- L. Bouten, "Applications of quantum stochastic processes in quantum optics", Quantum Potential Theory, pp 277-307, Springer, 2008.
- 4 P.Meyer, "Quantum probability for probabilists", LNM (Vol 1538), Springer, 1993.
- R. V. Kadison, J. R. Ringrose "Funfamentals of the theory of operator algebras", Vol 1, AMS, 1983.
- M. Reed, B. Simon, "Method of modern mathematical physics", Academic press, 1972.

Quantum probability theory at Hilbert space level 1

- \blacksquare Hilbert space : \mathcal{H}
- density operator (state of system) : ρ
- self-ajoint operator on \mathcal{H} (observable) : X
- **bounded Borel function on** \mathbb{R} : f

Expectation of
$$f(X)$$
: $\operatorname{Tr}(\rho f(X)) = \int_{\mathbb{R}} f(x) d\mu(x)$
probability of $X \in E \in \operatorname{Bor}(\mathbb{R})$: $\operatorname{Tr}(\rho \mathbb{1}_{E}(X)) = \mu(E)$

Objective

- Quantum analogues of σ-algebra and filtrations in classical probability
- 2 Transformation mechanism between observables and random variable

von Neumann algebra and normal state

Definition : *-algebra on $\mathcal H$

A *-algebra on $\mathcal H$ is a collection $\mathcal A$ of linear operators on $\mathcal H$ containing $\mathbb 1$ s.t.

- **1** $A, B \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$ implies $\alpha A + \beta B \in \mathcal{A}$.
- **2** $A, B \in \mathcal{A}$ implies $AB \in \mathcal{A}$.
- **3** $A \in \mathcal{A}$ implies $A^* \in \mathcal{A}$, where the mapping * is called an involution.

Moreover, \mathcal{A} is called *commutative* if AB = BA for any $A, B \in \mathcal{A}$.

Definition: state

A state ϕ on *-algebra $\mathcal A$ is a functional $\phi:\mathcal A\to\mathbb C$ s.t.

- II linearity : $A, B \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$ implies $\varphi(\alpha A + \beta B) = \alpha \varphi(A) + \beta \varphi(B)$.
- 2 positivity : for all $A \ge 0$ in \mathcal{A} , $\varphi(A) \ge 0$.
- **3** normalization : $\phi(1) = 1$.

von Neumann algebra and normal state

Definition: von Neumann algebra

A von Neumann algebra on \mathcal{H} is a *-subalgebra of $\mathscr{B}(\mathcal{H})$, containing the identity $\mathbbm{1}$ and strongly closed, i.e., $A_i \in \mathcal{A}$ and $\forall \psi \in \mathcal{H}$, $\lim_{i \to \infty} A_i \psi = A \psi$ implies $A \in \mathcal{A}$.

Definition: faithful and normal state

A state φ on von Neumann algebra \mathcal{A} is called

- faithful, if $\varphi(A^*A) = 0$ implies A = 0;
- **normal**, if $\varphi(\sup_{\alpha} A_{\alpha}) = \sup_{\alpha} \varphi(A_{\alpha})$ for all bounded increasing net A_{α} .

Quantum probability space

Definition: quantum probability space

A quantum probability space is a pair (\mathcal{A}, φ) , where

- \blacksquare \mathcal{A} is a von Neumann algebra (on \mathcal{H});
- lacksquare ϕ is a normal state on \mathcal{A} .

Proposition ¹

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Then

- $\mathcal{A} := \{M_f | f \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})\}$ is a commutative von Neumann algebra of the operators on $L^2(\Omega, \mathcal{F}, \mathbb{P})$;
- $lackbox{ } \phi: M_f \mapsto \int f d\mathbb{P}$ is a normal state on \mathcal{A} .

Remark: Classical probability space is a special case of quantum probability space.

^{1.} H. Maassen, "Quantum probability, Prop 1.1", Quantum Prob. Commu.(Vol 12), 2003.

Quantum probability space

- self-adjoint set $S: S \in S \Rightarrow S^* \in S$
- commutant of $S : S' := \{X \in \mathcal{B}(\mathcal{H}) | XS = SX, \forall S \in S\}$

Theorem: double commutant theorem 1

Let $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$ be any self-adjoint set. Then $\mathcal{A} = \mathcal{S}''$ is the **smallest** von Neumann subalgebra of $\mathcal{B}(\mathcal{H})$ containing \mathcal{S} . \mathcal{B} is a von Neumann algebra iff $\mathcal{B} = \mathcal{B}''$

Corollary

The von Neumann algebra generated by $S \subset \mathcal{B}(\mathcal{H})$ is $\mathrm{vN}(S) := (S \cup S^*)''$, where $S^* := \{X \in \mathcal{B}(\mathcal{H}) | X^* \in S\}$.

Corollary

Given a commuting set of observables $X = \{X_1, \dots, X_n\}$, vN(X) is a commutative von Neumann algebra. $(X \subset X' \Rightarrow X'' \subset X' = X''')$

^{1.} R. V. Kadison, J. R. Ringrose "Funfamentals of the theory of operator algebras, Thm 5.3.1", Vol 1, AMS, 1983.

Spectral theorem (finite-dimensional case)

Theorem: spectral theorem (finite-dimensional case) 1

Let (\mathcal{A}, φ) be a commutative quantum probability space on a finite-dim Hilbert space. Then there are a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and *-isomorphism $\iota : \mathcal{A} \to \mathit{l}^\infty(\Omega, \mathcal{F}, \mathbb{P})$ s.t. $\varphi(X) = \mathbb{E}^\mathbb{P}(\iota(X))$ for all $X \in \mathcal{A}$.

Proof.

- 1 finite dimensional Hilbert space : \mathbb{C}^N
- 2 \mathcal{A} : a commutative *-algebra of complex $N \times N$ matrices
- ∃ a unitary matrix U s.t. U^*XU is diagonal ∀X ∈ 𝒯
- $\Omega := \{1, ..., N\}, \ \mathcal{F} := 2^{\Omega}$
- **5** define $\iota(X): \Omega \to \mathbb{C}$ by $\iota(X)(i) = (U^*XU)_{ii} \in \mathbb{C}$ for $i \in \Omega$
- **6** $\mathbb{P}(E) = \varphi(\iota^{-1}(\mathbb{1}_E))$ for all $E \in \mathcal{F}$

^{1.} L. Bouten, R. van Handel, M. James, "An introduction to quantum filtering, Thm 2.4", SIAM. J. Control Optim, 2007.

Spectral theorem (infinite-dimensional case)

Theorem: spectral theorem (infinite-dimensional case) 1

Let $\mathcal H$ be separable and $\mathcal A$ be a commutative von Neumann algebra on $\mathcal H$. Then there exist a finite measure space $(\Omega,\mathcal F,\mu)$ s.t. $\mathcal U\mathcal A\mathcal U^*=\mathcal L^\infty(\Omega,\mathcal F,\mu)$ acting on $\mathcal L^2(\Omega,\mathcal F,\mu)$ by pointwise multiplication.

Outline of proof.

- **1** \mathcal{H} is separable, \mathcal{A} is commutative $\Rightarrow \exists A = A^* \in \mathcal{A}$ s.t. $\mathcal{A} = vN(A)$
- 2 ∃ finite measure space $(Ω, \mathcal{F}, \mu)$, bounded measurable function a on Ω, and unitary map $U : \mathcal{H} \to L^2(Ω, \mathcal{F}, \mu)$, s.t. $(UAU^*v)(ω) = a(ω)v(ω)$, for all $v \in L^2(Ω, \mathcal{F}, \mu)$ (spectral theorem) ²
- **3** define von Neumann algebra $\mathcal{B} := \{f(A)|f$ bounded Borel on $sp(A)\}$
- 4 define *-isomorphism $\iota: \mathcal{B} \to L^{\infty}(\Omega, \mathcal{F}, \mu)$ by $\iota(f(X)) = Uf(X)U^* = M_{f \circ a}$ (functional calculus)²
- $\mathcal{B} = \mathcal{A}.^3$
- 1. R. van Handel, "Filtering, stability, and robustness, Thm B.1.13", Ph.D. Thesis, 2007.
- 2. M. Reed, B. Simon, "Method of modern mathematical physics, Ch VII.2", AP, 1972.
- 3. J. R. Ringrose, R. V. Kadison, "Fundamentals of the theory of operator algebras, Thm 5.2.9".

Spectral theorem (infinite-dimensional case)

Corollary 1

Let (\mathcal{A},ϕ) be a commutative quantum probability space on separable \mathcal{H} . Then there exist a finite measure space (Ω,\mathcal{F},μ) , a *-isomorphism $\iota:\mathcal{A}\to L^\infty(\Omega,\mathcal{F},\mu)$, and a probability measure $\mathbb{P}\ll \mu$ s.t. $\phi(A)=\mathbb{E}^\mathbb{P}\big(\iota(A)\big)$ for all $A\in\mathcal{A}$.

- $P \in \mathcal{A}$ s.t. $\varphi(P) = 0$, then $\iota(P) = 0$
- \blacksquare μ is to define the null set in \mathcal{F} , then define $\mathbb{P} \ll \mu$ by ϕ
- commutative probability space is equivalent to classical probability space

^{1.} L. Bouten, R. van Handel, M. James, "An introduction to quantum filtering, Thm 3.3", SIAM. J. Control Optim, 2007.

Spectral representation of unbounded observable

- \blacksquare Hilbert space \mathcal{H}
- $lacksquare \mathcal{P}(\mathcal{H})$ the set of orthogonal projections on \mathcal{H}
- **spectral measure** on $(\mathbb{R}, \mathrm{Bor}(\mathbb{R}))$ is $\xi : \mathrm{Bor}(\mathbb{R})) \to \mathcal{P}(\mathcal{H})$ s.t.
 - * $\xi(\emptyset) = 0$ and $\xi(\mathbb{R}) = 1$
 - * $\xi(\bigcup_i E_i) = \text{s-lim}_{k \to \infty} \sum_{i=1}^k \xi(E_i)$ for countable sequence of disjoint set E_i
 - * $\xi(E_1)\xi(E_2) = \xi(E_1 \cap E_2) = \xi(E_2)\xi(E_1)$

Theorem: von Neumann's spectral theorem 1

For any self-adjoint operator X on \mathcal{H} , $\exists ! \, \xi : \mathrm{Bor}(\mathbb{R}) \to \mathcal{P}(\mathcal{H})$ s.t.

$$X=\int_{\mathbb{R}}x\xi(dx).$$

Then, given any Borel function f on \mathbb{R} , $\int_{\mathbb{R}} f(x)d\xi(x)$ is denoted by f(X).

^{1.} P.Meyer, "Quantum probability for probabilists, pp 8", LNM (V. 1538), Springer, 1993.

Unbounded observable

- lacktriangle (not necessarily bounded) observable X on $\mathcal H$ has real spectrum
- von Neumann algebra $\mathcal{A} \subset \mathscr{B}(\mathcal{H})$

Definition

- **1** *X* is **affiliated** to \mathcal{A} , $(X \eta \mathcal{A})$, if spectral measure $\xi_X(E) \in \mathcal{A}$, $\forall E \in \text{Bor}(\mathbb{R})$.
- **2** von Neumann algebra generated by $X : vN(X) := vN(\{\xi_X(E) | E \in Bor(\mathbb{R})\})$
 - the above probabilistic definition is equivalent to the algebraic one ¹
 - lacktriangle observable is affiliated to $\mathcal{A} \leftrightarrow \text{r.v}$ is measurable w.r.t σ -algebra
- $X \in \mathcal{B}(\mathcal{H})$, X is affiliated to \mathcal{A} iff $X \in \mathcal{A}^2$,
- $X \in \mathcal{B}(\mathcal{H})$, $vN(X) = vN(\{\xi_X(E)|E \in \sigma$ -algebra on $sp(X)\})$ and $X \eta vN(X)$

^{1.} P.Meyer, "Quantum probability for probabilists, pp 245", LNM (Vol 1538), Springer, 1993.

^{2.} J. R. Ringrose, R. V. Kadison, "Fundamentals of the theory of operator algebras, Thm 5.2.3", Vol 1, AMS, 1983.

Unbounded affiliated observable

- $X \eta \mathcal{A}$, \mathcal{A} is commutative $\Rightarrow \exists A = A^* \in \mathcal{A}$ s.t. $\mathcal{A} = vN(A)$
- $(X + i\mathbb{1})^{-1}$ is bounded and belongs to vN(A)
- **spectral theorem** on $\mathcal{A}\Rightarrow U:\mathcal{H}\to L^2(\Omega,\mathcal{F},\mu)$ and *-isomorphism $\iota:\mathcal{A}\to L^\infty(\Omega,\mathcal{F},\mu)\Rightarrow \iota\bigl((X+i\mathbb{1})^{-1}\bigr)$
- spectral theorem for unbounded observable 1 implies

$$\iota(X)(\omega) = \frac{1}{\iota((X+i\mathbb{1})^{-1})(\omega)} - 1, \quad \omega \in \Omega,$$

 $\iota(X)$ is a μ -a.s. finite \mathcal{F} -measurable r.v. on Ω .

^{1.} M. Reed, B. Simon, "Method of modern mathematical physics, Thm VIII.4", AP, 1972.

Additive and multiplication of affiliated observables ¹

- lacktriangle commutative von Neumann algebra : $\mathcal A$
- **spectral theorem** on $\mathcal{A} \Rightarrow *$ -isomorphism $\iota : \mathcal{A} \to L^{\infty}(\Omega, \mathcal{F}, \mu)$
- lacksquare set of all self-adjoint operators affiliated to $\mathcal{A}:\mathscr{S}(\mathcal{A})$

Lemma

For any $X, Y \eta \mathcal{A}, X \hat{+} Y := \overline{X + Y}$ and $X \hat{\cdot} Y := \overline{XY}$ are self-adjoint and affiliated to \mathcal{A}

Lemma

- $\mathscr{S}(\mathcal{A})$ forms a commutative *-algebra (with unit 1) under $\hat{+}$ and $\hat{\cdot}$.
- $\iota: \mathcal{A} \to L^{\infty}(\Omega, \mathcal{F}, \mu)$ extends to an isomorphism between $\mathscr{S}(\mathcal{A})$ and the set of μ -a.s. finite \mathcal{F} -measurable r.v. on Ω .

^{1.} J. R. Ringrose, R. V. Kadison, "Fundamentals of the theory of operator algebras, pp 351-356", Vol 1, AMS, 1983.

Additive and multiplication of affiliated observables ¹

- commutative von Neumann algebra : A
- **spectral theorem** on $\mathcal{A} \Rightarrow *$ -isomorphism $\iota : \mathcal{A} \to L^{\infty}(\Omega, \mathcal{F}, \mu)$
- set of all normal operators affiliated to $\mathcal{A}: \mathcal{N}(\mathcal{A})$

Lemma

- A closed and densely defined operator X is **normal** if $X + X^*$ and $i(X^* X)$ are self-adjoint and commute with each other.
- A normal operator X is affiliated to \mathcal{A} if $X + X^*$ and $i(X^* X)$ are affiliated to \mathcal{A} .

Lemma

- $\mathcal{N}(\mathcal{A})$ forms a commutative *-algebra (with unit 1) under $\hat{+}$ and $\hat{\cdot}$.
- $\iota: \mathcal{A} \to L^{\infty}(\Omega, \mathcal{F}, \mu)$ extends to an isomorphism between $\mathscr{N}(\mathcal{A})$ and the set of μ -a.s. finite \mathcal{F} -measurable random variable on Ω .

^{1.} J. R. Ringrose, R. V. Kadison, "Fundamentals of the theory of operator algebras, pp 351-356", Vol 1, AMS, 1983.

Example: position and momentum operators

lacksquare Schrödinger representation on Schwartz space $\mathscr{S}(\mathbb{R})$

$$(Q\psi)(x) = x\psi(x), \quad (P\psi)(x) = -i\hbar \frac{d}{dx}\psi(x), \quad \psi \in \mathcal{H},$$

- P and Q are defined as closures of $i^{-1}d/dx$ and multiplication by x on $\mathscr{S}(\mathbb{R})$, Q and P are self-adjoint
- $\Psi(x)=(2\pi)^{-1/4}\sigma^{-1/2}e^{-rac{(x-\mu)^2}{4\sigma^2}}$ defines a normal state on $\mathscr{B}(\mathcal{H})$
- $\forall E \in \mathrm{Bor}(\mathbb{R}), (\xi_Q(E)\psi)(x) = \mathbb{1}_E(x)\psi(x).$
- \mathbf{v} \mathbf{v}
- $\forall E \in \operatorname{Bor}(\mathbb{R}), \mathbb{P}_Q(\iota(Q) \in E) = \varphi(\xi_Q(E)) = \int_E \psi^2(x) dx$ is a Gaussian measure with mean μ and variance σ^2 .

Example: position and momentum operators

$$\begin{split} \mathbb{E}\big(\iota(e^{itQ})\big) &= \langle \psi, e^{itQ} \psi \rangle = \int_{\mathbb{R}} e^{itx} \psi^2(x) dx = e^{it\mu - \frac{i^2\sigma^2}{2}}, \\ \mathbb{E}\big(\iota(e^{itP})\big) &= \langle \psi, e^{itP} \psi \rangle = \int_{\mathbb{R}} \psi(x) \psi(x + \hbar t) dx = e^{-\frac{\hbar^2 t^2}{8\sigma^2}}. \end{split}$$

- \bullet $\iota(Q) \sim \mathcal{N}(\mu, \sigma^2)$
- $lacksquare 1(P) \sim \mathcal{N}(0, \hbar^2/4\sigma^2)$

Quantum stochastic process

Quantum stochastic process: Wiener and Poisson processes

References:

- K. R. Parthasarthy, "An introduction to quantum stochastic calculus", Birkhauser, 1992.
- L. Bouten, R. van Handel, M. James, "An introduction to quantum filtering", SIAM. J. Control Optim, 2007.
- 3 L. Bouten, "Applications of quantum stochastic processes in quantum optics", Quantum Potential Theory, pp 277-307, Springer, 2008.
- 4 R. van Handel, "Filtering, stability, and robustness", Ph.D. Thesis, 2007.

Fock space

- For $u_1, \ldots, u_N \in \mathcal{H}$, $u_1 \circ \cdots \circ u_N := \frac{1}{N!} \sum_{\sigma \in \mathscr{P}_N} u_{\sigma(1)} \otimes \cdots \otimes u_{\sigma(N)}$, where \mathscr{P}_N is permutation group on N elements.
- $\mathcal{H}^{\circ N}$: the closed subspace of $\mathcal{H}^{\otimes N}$ generated by all vectors $u_1 \circ \cdots \circ u_N$
- lacksquare scalar products defined on $\mathcal{H}^{\otimes N}$ and $\mathcal{H}^{\circ N}$

$$\langle u_1 \otimes \cdots \otimes u_N, v_1 \otimes \cdots \otimes v_N \rangle_{\otimes} = \langle u_1, v_1 \rangle \ldots \langle u_N, v_N \rangle; \langle u_1 \circ \cdots \circ u_N, v_1 \circ \cdots \circ v_N \rangle_{\circ} = \operatorname{Per}(\langle u_i, v_j \rangle)_{0 \leq i, j \leq N},$$

Definition: symmetric Fock space

A symmetric (or bosonic) Fock space over \mathcal{H} is $\Gamma_s(\mathcal{H}) := \mathbb{C} \oplus \bigoplus_{n=1}^{+\infty} \mathcal{H}^{\circ n}$, \mathcal{H} is called single-particle Hilbert space.

Remark : $\Gamma_s(\mathcal{H})$ is a separable Hilbert space if \mathcal{H} is separable.

Exponential vector

- **exponential vector** : $e(u) = \bigoplus_{n=0}^{+\infty} \frac{u^{\otimes n}}{\sqrt{n!}} \in \Gamma_s(\mathcal{H})$ with $u \in \mathcal{H}$
- vacuum vector : $e(0) = 1 \oplus 0 \oplus 0 \oplus \dots$
- **exponential domain** : $\mathcal{E}(\mathcal{H}) := \text{span}\{e(u) | u \in \mathcal{H}\}$
- $\mathcal{E}(\mathcal{H})$ is **dense** in $\Gamma_s(\mathcal{H})$, the generators e(u) of $\mathcal{E}(\mathcal{H})$ are linearly independent ¹

K. R. Parthasarthy, "An introduction to quantum stochastic calculus, pp 126-127", Birkhauser, 1992.

Stone's theorem

Definition: strongly continuous one-parameter unitary group

An operator-valued function U_t on \mathcal{H} is called a **strongly continuous one-parameter unitary group** if it satisfies

- **1** group property : $\forall s, t \in \mathbb{R}, U_{t+s} = U_t U_s$;
- **2** strong continuity : $\forall t_0 \in \mathbb{R}$ and $\psi \in \mathcal{H}$, $\lim_{t \to t_0} U_t \psi = U_{t_0} \psi$.

Theorem: Stone's theorem

Let $\{U_t\}_{t\in\mathbb{R}}$ be a strongly continuous one-parameter unitary group on \mathcal{H} . Then there is a self-adjoint operator A on \mathcal{H} s.t. $U_t=e^{itA}$.

Weyl operators

Theorem: Weyl operators 1

■ For any $u, v \in \mathcal{H}$ and unitary operator U on \mathcal{H} , there exists an unique *unitary* operator (Weyl operator) W(u, U) on $\Gamma_s(L^2(\mathbb{R}_+))$ satisfying

$$W(u,U)e(v) = e^{-\langle u,Uv\rangle - ||u||^2/2}e(Uv+u).$$

■ For any $u_i, v \in \mathcal{H}$ and unitary operator U_i on \mathcal{H} with i = 1, 2,

$$W(u_1, U_1)W(u_2, U_2) = e^{-i\operatorname{Im}\langle u_1, U_1 u_2 \rangle} W(u_1 + U_1 u_2, U_1 U_2).$$

$$(u_1, U_1) = (u, 1)$$
 and $(u_2, U_2) = (0, U)$, $W(u, U) = W(u, 1)W(0, U)$

•
$$W_u := W(u, 1), \Gamma(U) := W(0, U)$$

^{1.} K. R. Parthasarthy, "An introduction to quantum stochastic calculus, pp 135", 1992.

Field operator and differential second quantization

Translation group by the vector u:

- 1 Weyl relation : $W_u^* = W_{-u}$, $W_u W_v = e^{-i\operatorname{Im}\langle u,v\rangle} W_{u+v}$
- 2 $W_{su}W_{tu} = W_{(s+t)u}$ and its strong continuity ¹
- 3 W_{tu} for $t \in \mathbb{R}$ forms a one-parameter strong continuous unitary group
- 4 $\forall u \in \mathcal{H}, \exists B(u)$ (field operator) s.t. $W_{tu} = e^{itB(u)}, \forall t \in \mathbb{R}$ (Stone's theorem)
- **5** B(u) and B(v) commute if $\langle u, v \rangle \in \mathbb{R}^2$

Rotation group by the unitary operator U:

- 2 given $U_t = e^{itA}$, $\Gamma(U_t)$ defines a one-parameter strongly continuous unitary group on $\Gamma_s(\mathcal{H})$
- **3** $\forall u \in \mathcal{H}$, $\exists \Lambda(A)$ (differential second quantization of *A*) s.t. $\Gamma(U_t) = e^{it\Lambda(A)}$, $\forall t \in \mathbb{R}$ (Stone's theorem)
- $\Lambda(A_1)$ and $\Lambda(A_2)$ commute if $[A_1, A_2] = 0^2$
- 1. K. R. Parthasarthy, "An introduction to quantum stochastic calculus, Prop 20.1", 1992.
- 2. M. Reed, B. Simon, "Method of modern mathematical physics, Thm VIII.13", AP, 1972.

Quantum fundamental stochastic processes

Definition: fundamental stochastic processes

- quadratures : $Q_t = B(i\mathbb{1}_{[0,t]}), P_t = B(-\mathbb{1}_{[0,t]})$
- gauge process : $\Lambda_t = \Lambda(M_{1_{[0,t]}})$, $M_{1_{[0,t]}}f = 1_{[0,t]}f$ for $f \in L^2(\mathbb{R}_+)$

Remark : Q_t , P_t , Λ_t are commutative, they do not commute with each other

Definition: filtration

$$Q_t := vN\{Q_s | 0 \le s \le t\}, \, \mathcal{P}_t := vN\{P_s | 0 \le s \le t\}, \, \Lambda_t := vN\{\Lambda_s | 0 \le s \le t\}$$

- **1** vacuum state Φ on $\mathscr{B}(\Gamma_s(L^2(\mathbb{R}_+))): \Phi = \langle e(0), e(0) \rangle$
- **2** coherent state $\Phi_f: \Phi_f = \langle W_f e(0), \cdot W_f e(0) \rangle = e^{-\|f\|^2} \langle e(f), \cdot e(f) \rangle$
- **3** commutative quantum probability space $(Q_t, \Phi), (\mathcal{P}_t, \Phi), (\Lambda_t, \Phi_t)$
- **4** spectral theorem $\Rightarrow \iota(Q_t), \iota(P_t), \iota(\Lambda_t)$ on different probability spaces

Wiener processes in vacuum state

Lemma

 $q_t = \iota(Q_t)$ and $p_t = \iota(P_t)$ are Wiener processes in vacuum state.

Proof.

For $0 \le t_1 \le t_2 \le t_3 \le t_4 < \infty$, $x, y \in \mathbb{R}$, the joint characteristic function of $q_{t_4} - q_{t_3}$ and $q_{t_2} - q_{t_1}$:

$$\begin{split} \mathbb{E}^{\mathbb{P}_0} \big(e^{ix(q_{t_4} - q_{t_3}) + iy(q_{t_2} - q_{t_1})} \big) &= \langle e(0), \textit{W}_{ix1\!\!1_{[t_3,t_4]} + iy1\!\!1_{[t_1,t_2]}} e(0) \rangle \\ &= e^{- \left\| x1\!\!1_{[t_3,t_4]} + y1\!\!1_{[t_1,t_2]} \right\|^2/2} &= e^{-x^2(t_4 - t_3)/2} e^{-y^2(t_2 - t_1)/2}. \end{split}$$

- **2** q_t has independent increments, $q_t q_s \sim \mathcal{N}(0, t s)$ for $0 \le s \le t < \infty$.
- 3 Kolmogorov continuity theorem, there exist a continuous modification of q_t .
- \blacksquare proof for p_t is identical.

Poisson process in coherent state

Lemma

$$\lambda_t = \iota(\Lambda_t)$$
 is

- a.s. zero in vacuum state
- Poisson process with time-dependent intensity $|f(t)|^2$ in coherent state Φ_f .

Proof.

- $\Gamma(U)e(0) = e(0)$, $\iota(\Lambda_t)$ is a.s. zero in vacuum state
- 2 for $0 \le t_1 \le t_2 \le t_3 \le t_4 < \infty$, $x,y \in \mathbb{R}$, the joint characteristic function of $\lambda_{t_4} \lambda_{t_3}$ and $\lambda_{t_2} \lambda_{t_1}$:

$$\begin{split} &\mathbb{E}^{\mathbb{P}}(e^{ix(\lambda_{t_4}-\lambda_{t_3})+iy(\lambda_{t_2}-\lambda_{t_1})}) = e^{-\|f\|^2} \langle e(f), \Gamma(e^{ixM_{\mathbb{I}_{[t_3,t_4]}}} e^{iyM_{\mathbb{I}_{[t_1,t_2]}}}) e(f) \rangle \\ &= e^{-\|f\|^2} \exp(\langle f, e^{ixM_{\mathbb{I}_{[t_3,t_4]}}} e^{iyM_{\mathbb{I}_{[t_1,t_2]}}} f \rangle) \\ &= \exp\left(\int_{t_3}^{t_4} |f(t)|^2 dt(e^{ix}-1)\right) \exp\left(\int_{t_1}^{t_2} |f(t)|^2 dt(e^{iy}-1)\right). \end{split}$$

3 $\lambda_t := \iota_f(\Lambda_t)$ has independent increments, $\lambda_t - \lambda_s \sim \operatorname{Pois}(\int_s^t |f(x)|^2 dx)$ for $0 \le s \le t < \infty$.

Wiener and Poisson processes in quantum optics 1

In quantum optics:

- Q_t and P_t can be observed by using a homodyne detector to measure the vacuum
- \blacksquare Λ_t can be measured by a **photon counter**

^{1.} A. Barchielli, "Continual measurements in quantum mechanics and quantum stochastic calculus", Open Quantum Systems III, 2006.