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Quantum probability theory at Hilbert space level !

m Hilbert space : H

m density operator (state of system) : p

m self-ajoint operator on H (observable) : X
® bounded Borel functionon R : f

Expectation of (X) : Tr(pf(X)) = /]R F(x)du(x)
probability of X € £ € Bor(R) : Tr(pl£(X)) = u(E)

Quantum analogues of c-algebra and filtrations in classical probability
Transformation mechanism between observables and random variable

1. S. Attal, “Quantum noise theory’, http://math.univ-1lyonl.fr/~attal/chapters.html o8


http://math.univ-lyon1.fr/~attal/chapters.html
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T Quantum probability theory

von Neumann algebra and normal state

Definition : x-algebra on #
A x-algebra on 7 is a collection 4 of linear operators on 7 containing 1 s.t.
A,Be 4anda,p € Cimplies aA+pB € 4.
A,B € 4 implies AB € 4.
A€ 4 implies A* € 4, where the mapping * is called an involution.
Moreover, A4 is called commutative if AB= BAfor any A,B € 4.

Definition : state

A state @ on x-algebra 4 is a functional ¢ : 4 — C s.t.
linearity : A,B € 4 and o, € C implies ¢(atA+ BB) = ap(A) + Bo(B).
positivity : for all A> 0in 4, ¢(A) > 0.
normalization : @(1) = 1.
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T Quantum probability theory

von Neumann algebra and normal state

Definition : von Neumann algebra

A von Neumann algebra on # is a *-subalgebra of Z(#), containing the
identity 1 and strongly closed, i.e., A; € 4 and Yy € H, lim;_,.. AW = Ay
implies A € 4.

Definition : faithful and normal state

A state ¢ on von Neumann algebra A4 is called
m faithful, if @(A*A) = 0 implies A= 0;

m normal, if @(supy,Ag) = supy, @(Aq) for all bounded increasing net Ay,
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Quantum probability space

A quantum probability space is a pair (4, ¢), where
m 4 is a von Neumann algebra (on #);
m @ is a normal state on 4.

Let (22, F,P) be a probability space. Then

m 4:={Mlfel>(Q,F,P)}is a commutative von Neumann algebra of
the operators on L2(Q, F,P);

m ¢: M — [fdPis a normal state on 4.

Remark : Classical probability space is a special case of quantum probability space.

1. H. Maassen, “Quantum probability, Prop 1.1”, Quantum Prob. Commu.(Vol 12), 2003. s
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Quantum probability space

m self-adjointset $:SeS=S" €S
m commutant of S : 5 := {X € B(H)|XS = SX,VS € 5}

Theorem : double commutant theorem !

Let S C B(H) be any self-adjoint set. Then 4 = S” is the smallest von Neumann
subalgebra of Z(H) containing S. B is a von Neumann algebra iff B = B”

Corollary

The von Neumann algebra generated by S C ZB(#H) is vN(S) := (SUS*)", where
S*i={Xe B(H)|X" €S}

Corollary

Given a commuting set of observables X = {Xj,..., X, }, vN(X) is a commutative
von Neumann algebra. (X C X' = X" c X' = Xx"")

1. R. V. Kadison, J. R. Ringrose “Funfamentals of the theory of operator algebras, Thm 5.3.1”,
Vol 1, AMS, 1983.
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Spectral theorem (finite-dimensional case)

Theorem : spectral theorem (finite-dimensional case)

Let (4, ¢) be a commutative quantum probability space on a finite-dim
Hilbert space. Then there are a probability space (2, F,P) and
s-isomorphism 1 : 4 — I°(Q, F,P) s.t. (X) = EF(1(X)) for all X € 4.

Proof.
finite dimensional Hilbert space : CV
A : a commutative x-algebra of complex N x N matrices
3 a unitary matrix U s.t. U*XU is diagonal VX € 4
Q:={1,...,N}, F :=2%
define 1(X) : Q@ — C by u(X)(i) = (U*XU);; € Cfori € Q
B P(E)=9¢(1 '(Lg)) foral E€ F

1. L. Bouten, R. van Handel, M. James, “An introduction to quantum filtering, Thm 2.4’, SIAM.
J. Control Optim, 2007. /08
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T Quantum probability theory

Spectral theorem (infinite-dimensional case)

Theorem : spectral theorem (infinite-dimensional case)

Let H be separable and 4 be a commutative von Neumann algebra on . Then
there exist a finite measure space (2, F,u) s.t. UAU* = L*(2, F ,u) acting on
L2(Q, F ,u) by pointwise multiplication.

Outline of proof.
H is separable, 4 is commutative = JA = A* € 4 s.t. 4 = vN(A)
3 finite measure space (2, F, i), bounded measurable function a on €, and

unitary map U : # — [2(Q, F ,u), s.t. (UAU*v)(0) = a(0)v(o), for all
v € L3(Q, F ,u) (spectral theorem)?
define von Neumann algebra B := {f(A)|f bounded Borel on sp(A)}
B define s-isomorphism 1 : B — L*(2, F,u) by 1(f(X)) = Uf(X)U* = Myoq
(functional calculus)?
B=24.3
1. R. van Handel, “Filtering, stability, and robustness , Thm B.1.13", Ph.D. Thesis, 2007.

2. M. Reed, B. Simon, “Method of modern mathematical physics, Ch VIl.2”, AP, 1972.
3. J. R. Ringrose, R. V. Kadison, “Fundamentals of the theory of operator algebras, Thm 5.2.9".
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T Quantum probability theory

Spectral theorem (infinite-dimensional case)

Corollary !

Let (4,9) be a commutative quantum probability space on separable #. Then there
exist a finite measure space (€2, F,u), a x-isomorphismt: 4 — L=(Q, F,u), and a
probability measure P < u s.t. ¢(A) = EF (1(A)) forall A€ 4.

m Pec st ¢(P)=0,theni(P)=0
m uis to define the null set in F, then define P < u by ¢

B commutative probability space is equivalent to classical probability space

1. L. Bouten, R. van Handel, M. James, “An introduction to quantum filtering, Thm 3.3, SIAM.
J. Control Optim, 2007.
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Spectral representation of unbounded observable

m Hilbert space H
m P(#H) the set of orthogonal projections on H
m spectral measure on (R,Bor(R)) is & : Bor(R)) — P(H) s.t.

*E(0)=0and&{(R)=1
* E(U; Ei) = s-limke X4 &(E7) for countable sequence of disjoint set E;

" &(E1)E(E2) = E(E1 N E2) = E(E2)E(Er)

Theorem : von Neumann’s spectral theorem !

For any self-adjoint operator X on #, 3'& : Bor(R) — P(#) s.t.

X= /Rxg(dx).

Then, given any Borel function f on R, i f(x)d§(x) is denoted by f(X).

m (g, (X)) = [ FO) (W E(ax)w), Yy € {y € H | [ |F(x) [ (y,E(ax)y) <oo}.

1. P.Meyer, “Quantum probability for probabilists, pp 8", LNM (V. 1538), Springer, 1993.
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T Quantum probability theory

Unbounded observable

m (not necessarily bounded) observable X on # has real spectrum

m von Neumann algebra 4 C Z(H)
X is affiliated to 4, (XM 4), if spectral measure Ex(E) € 4, VE € Bor(R).
von Neumann algebra generated by X : vN(X) := vN({&x(E)|E € Bor(R)})

the above probabilistic definition is equivalent to the algebraic one
m observable is affiliated to 4 <+ r.v is measurable w.r.t G-algebra

X € B(H), X is affiliated to A iff X € 42,
X € B(H), vN(X) = vN({Ex(E)|E € o-algebra on sp(X)}) and X1 vN(X)

1. P.Meyer, “Quantum probability for probabilists, pp 245", LNM (Vol 1538), Springer, 1993.

2. J. R. Ringrose, R. V. Kadison, “Fundamentals of the theory of operator algebras, Thm 5.2.3",
Vol 1, AMS, 1983.

13/28



Introduction to quantum feedback control

T Quantum probability theory

Unbounded affiliated observable

B XM A4, 4is commutative = JA = A* € 4 s.t. 4 = vN(A)
m (X+i1)~" is bounded and belongs to vN(A)

m spectral theoremon 4 = U : H — L?(Q, F,u) and x-isomorphism
1A= L2, F ,u) = 1(X+i1)7)

m spectral theorem for unbounded observable! implies

1
1(X)(m):m—1, oeQ,

Y(X) is a y-a.s. finite F-measurable r.v. on .

1. M. Reed, B. Simon, “Method of modern mathematical physics, Thm VIll.4”, AP, 1972.
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Additive and multiplication of affiliated observables

m commutative von Neumann algebra : 4
m spectral theorem on 4 = x-isomorphism1: 4 — L=(Q, F,u)

m set of all self-adjoint operators affiliated to 4 : . (4)

Forany X,¥YnA4, X+Y := X+ Y and XY := XY are self-adjoint and affiliated to 4

Lemma

m .7(A4) forms a commutative *-algebra (with unit 1) under + and *.

m 14— L7(Q, F,u) extends to an isomorphism between .#(4) and the set of
p-a.s. finite F-measurable r.v. on 2.

1. J. R. Ringrose, R. V. Kadison, “Fundamentals of the theory of operator algebras, pp
351-356", Vol 1, AMS, 1983.
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T Quantum probability theory

Additive and multiplication of affiliated observables

® commutative von Neumann algebra : 4
m spectral theorem on A4 = x-isomorphism 1: 4 — L*(Q, T, u)

m set of all normal operators affiliated to 4 : .4(4)

m A closed and densely defined operator X is normal if X-+X* and i(X*=X) are
self-adjoint and commute with each other.

m A normal operator X is affiliated to 4 if X+-X* and i(X* = X) are affiliated to 4.

m ¥ (A4) forms a commutative *-algebra (with unit 1) under + and *.

m 14— [°(Q, F,u) extends to an isomorphism between .4"(4) and the set of
p-a.s. finite F-measurable random variable on .

1. J. R. Ringrose, R. V. Kadison, “Fundamentals of the theory of operator algebras, pp
351-356", Vol 1, AMS, 1983. \6o8
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T Quantum probability theory

Example : position and momentum operators

m Schrédinger representation on Schwartz space .7 (R)
(QY)(x) = xw(x), (PY)(x) = —ihgw(x), weH,

m P and Q are defined as closures of i~"d/dx and multiplication by x on .#(R),
Q and P are self-adjoint

_lew?
m y(x) = (2n) /46~ 1/2e” w* defines a normal state on ()

m VE € Bor(R), (Sa(E)W)(x) = Le(x)w(x).
= WN(Q) = L*(R)

m VE € Bor(R), Pq(1(Q) € E) = ¢(Eq(E)) = [eW?(x)dx is a Gaussian
measure with mean u and variance 62.
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T Quantum probability theory

Example : position and momentum operators

E(1(e")) = (y,6"y) = / D2 (x)x = &%
K22

E(1(e")) = (v, e"y) = / Y()W(x+ht)dx = e o .

= 1(Q) ~ N(u,6°)
m 1(P) ~ N(0,12/4c?)

18/28



Introduction to quantum feedback control

T Quantum stochastic process

Quantum stochastic process

Quantum stochastic process : Wiener and Poisson processes J
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T Quantum stochastic process

Fock space

m Foruy,...,uy € H,uj0---ouy:= ﬁzce(@NUG(U(X)”'@UG(N),Whel’e P is
permutation group on N elements.

m H°N : the closed subspace of H®N generated by all vectors uy o--- o Uy
m scalar products defined on H®N and #°N
(U@ @UN, Vi@ @ VN)g = (U1, V1) .. (UN, VN);
(uro---oun,vi0--ovn)o = Per((Ui, ) ooy s

Definition : symmetric Fock space

A symmetric (or bosonic) Fock space over # is ['s(#) := Co @ H°", H is
called single-particle Hilbert space.

Remark : [;(H) is a separable Hiloert space if # is separable.
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T Quantum stochastic process

Exponential vector

exponential vector : e(u) = @, “;i" Ms(H)withue H

m vacuum vector : ¢(0) =100®0D...
(e(u). e(v)) = K% (U™ V") = £ 1 ({.v)" = e

exponential domain : E(H) := span{e(v)|u € H}

E(H) is dense in [5(H), the generators e(u) of E(H) are linearly
independent '

1. K. R. Parthasarthy, “An introduction to quantum stochastic calculus, pp 126-127",
Birkhauser, 1992.
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T Quantum stochastic process

Stone’s theorem

Definition : strongly continuous one-parameter unitary group

An operator-valued function U; on # is called a strongly continuous
one-parameter unitary group if it satisfies

group property : Vs, t € R, Ups = Ui Us;

strong continuity : Vi, € R and y € A, lim_,, Upy = Uy .

Theorem : Stone’s theorem

Let {U;}+cr be a strongly continuous one-parameter unjtary group on .
Then there is a self-adjoint operator A on # s.t. U; = e™.
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T Quantum stochastic process

Weyl operators

Theorem : Weyl operators '

m For any u,v € # and unitary operator U on #, there exists an unique unitary
operator (Weyl operator) W(u, U) on ['s(L2(R)) satisfying

W(u,U)e(v) = e’<”’U">’”””2/2e(Uv+ u).
m For any uj,v € H and unitary operator U; on #H with i = 1,2,
W(U1 , Uy ) W(U27 U2) = e—iIm<u1,U1 Uz) W(U1 + Ujup, Uy Ug)).

® (ur,U) = (u,1) and (u, Uo) = (0, U), W(u, U) = W(u, 1)W(0, U)
m W, = W(u,1), T(U) := W(0,U)

1. K. R. Parthasarthy, “An introduction to quantum stochastic calculus, pp 135", 1992. 23 /08
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Field operator and differential second quantization

Translation group by the vector v :
Weyl relation : Wi = W_,, W,W, = e~ ™V, ,
WsuWi = W5 ), and its strong continuity '
Wy, for t € R forms a one-parameter strong continuous unitary group
Yu e #, 3B(u) (field operator) s.t. Wy, = eB(1) vVt € R (Stone's theorem)
B(u) and B(v) commute if (u, v) € R?

Rotation group by the unitary operator U :
rU)e(v) =e(Uv)=T(U)I(V)=T(UV)

given U; = &4, I'(U;) defines a one-parameter strongly continuous unitary
group on (%)

Yu € H, IN(A) (differential second quantization of A) s.t. ['(U;) = e(A),
Vt € R (Stone’s theorem)

A(A1) and A(A2) commute if [Ar, Ax] = 02

1. K. R. Parthasarthy, “An introduction to quantum stochastic calculus, Prop 20.17, 1992.
2. M. Reed, B. Simon, “Method of modern mathematical physics, Thm VIII.13”, AP, 1972.
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Quantum fundamental stochastic processes

Definition : fundamental stochastic processes

m quadratures : Q; = B(il q), Pr = B(—1o )
m gauge process : A; = A(My, ), Mu, o f = Lo of for f € L3(Ry)

Remark : Q;, P;, \; are commutative, they do not commute with each other

Definition : filtration

Q= VN{Qs|0 < s < t}, B := YN{Ps0 < s < t}, Ay i= VN{AJ0 < s < £}

vacuum state ® on Z(Is(L3(R,))) : ® = (e(0), - e(0))

coherent state ®; : &y = (W;e(0),- W;e(0)) = e I"I* (e(f), - e(£))
commutative quantum probability space (Q;, @), (2, ), (Ar, r)
spectral theorem = 1(Q;), 1(P;), 1(A;) on different probability spaces
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Wiener processes in vacuum state

gt = 1(Q) and p; = 1(P;) are Wiener processes in vacuum state.

Proof.

For0<t <tk <t3 <l <o, x,y €R, the joint characteristic function of
G, — G, and G, — qy,
Po ( Lix(gy — iy(qs, —
EPo (elx(% iy )iy (a, q“)) = (e(0), VViX]l[,a,,I,]—Q—iy]l[ﬁ_,z] e(0))

2
— o ety ol /2 — ¥ (ti—t)/2g—y?(—1)/2,

qg: has independent increments, g; — gs ~ A[(0,t —s) for 0 < s < t < oo,
Kolmogorov continuity theorem, there exist a continuous modification of g;.

proof for p; is identical.
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Poisson process in coherent state

7\4 = l(/\() is
B a.s. zero in vacuum state

m Poisson process with time-dependent intensity |f(t)|? in coherent state ®r.

Proof.
I(U)e(0) = e(0), 1(A;) is a.s. zero in vacuum state
for0<ti <t <t3 <t <oo, x,y € R, the joint characteristic function of
At, — Ay and Ay, — Ay,
EIP(eix(Ku—X,3)+iy(M2—7»,1 )) _ e_Hfuz<e(f)7r(eiXMﬂ[’3"4] ein“lh )e(f))

I‘X/\/’ﬂ[[3

= & 1M exp((f, " tat "Mier vl 1))

— exp </tt I7(t) Palt(e” — 1)) exp (/tt \7(t)2at(e? —1)) .

At :=1¢(/\¢) has independent increments, A; — As ~ Pois( [ |f(x)[2dx) for
0<s<t< oo,
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T Quantum stochastic process

Wiener and Poisson processes in quantum op’[ics1

In quantum optics :

m Q; and P; can be observed by using a homodyne detector to measure
the vacuum

m /\; can be measured by a photon counter

1. A. Barchielli, “Continual measurements in quantum mechanics and quantum stochastic

calculus”, Open Quantum Systems Ill, 2006. .
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