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Introduction to quantum feedback control

From classical to quantum feedback control

Classical feedback control

Control objective :

Stabilize the system towards a target state (stabilization) ;

Minimize a cost function (optimal control).

Open-loop control
Closed-loop control

Control input is predetermined,
no feedback is involved.

Control input depends on the
information through the system
measurements. (Robust)
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Introduction to quantum feedback control

From classical to quantum feedback control

Classical feedback control

Feedback control with complete observations

Feedback control with partial observations

x̂t = E(xt |σ(ys≤t )) (MMSE), linear function πt (l) = E(l(xt )|σ(ys≤t )) = l(x̂t )

πt (h) = E(h(xt )|σ(ys≤t )) : best estimation of h(xt ) given ys≤t in L2 (filtering)
4 / 30



Introduction to quantum feedback control

From classical to quantum feedback control

Quantum mechanics in finite-dimensional setting

Density operator : ρ = ρ∗ ∈ CN×N , Tr(ρ) = 1 and ρ≥ 0

Observable : X = X∗ ∈ CN×N

Evolution : closed quantum system

Schrödinger P. : ρ̇(t) =−i[H,ρ(t)], ρ(t) = U(t)ρ(0)U∗(t);

Heisenberg P. : Ẋ(t) = i[H,X(t)], X(t) = U∗(t)X(0)U(t),

where H = H∗, U(t)U∗(t) = 1 and Tr(X(t)ρ(0)) = Tr(X(0)ρ(t)).
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Introduction to quantum feedback control

From classical to quantum feedback control

Quantum feedback control

FIGURE – Experiment setup for feedback control of spin system, which interacts with
an optical field measured continuously by homodyne detection. A magnetic field is
used for the feedback 1.

1. R. van Handel, J.K. Stockton, H.Mabuchi, IEEE TAC, 2005.
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Introduction to quantum feedback control

From classical to quantum feedback control

Problems on quantum feedback control

1 How to model the system-field interaction?

2 How to model the continuous measurement of the field?

3 How to estimate the state of the system based on the measurements?

4 How to design a feedback controller to achieve a control goal?
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Introduction to quantum feedback control

From classical to quantum feedback control

Lecture outline

1 Input-output model, classical filtering theory ;

2 Quantum probability theory, quantum filtering theory ;

3 Stochastic control theory, literature reviews 2 3 ;

4 Exponential feedback stabilization of qubit / 2-qubit systems ;

5 Exponential feedback stabilization of spin-J / N-qubit systems ;

6 Robustness of stabilizing qubit systems (unknown initial states) ;

7 Robustness of stabilizing spin-J systems (unknown initial states) ;

8 Discussion on insufficient computing power.

1. R. van Handel, J.K. Stockton, H.Mabuchi, “Feedback control of quantum state reduction”,
IEEE TAC, 2005.
2. M. Mirrahimi, R. van Handel, “Stabilizing feedback controls for quantum systems”, SIAM J

Control Optim, 2007.
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Introduction to quantum feedback control

History on quantum feedback control

Brief history on quantum feedback control

1 Belavkin 1 (1970s) : quantum analogous of stochastic control theory, Belavkin
quantum filtering equation (estimation).

2 Hudson, Parthasarathy 2 (1984) : quantum stochastic calculus and quantum
Itô formula.

3 Gardiner, Collett 3 (1985) : quantum analogous of input-output model, quantum
Langevin equation.

4 Carmichael 4 et al. (1990s) : quantum trajectory theory (simulation).

5 Bouten, van Handel, James 5 (2007) : morden formulation of Belavin’s work.

6 Serge Haroche, David Wineland : Nobel Prize in Physics in 2012.

1. https://www.maths.nottingham.ac.uk/plp/vpb/vpb_research.html
2. R. L. Hudson, K. R. Parthasarathy, “Quantum Ito’s formula and stochastic evolutions”,

Commun. Math Phys, 1984.
3. C. W. Gardiner, M. J. Collett, “Input and output in damped quantum systems : Quantum

stochastic differential equation and master equation”, PRA, 1985.
4. H. Carmichael, “An Open Systems Approach to Quantum Optics”, Springer, 1993.
5. L. Bouten, R. van Handel, M. James,“An introduction to quantum filtering”, SIAM. J. Control

Optim, 2007.
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Introduction to quantum feedback control

Open quantum system

Open quantum system and Input-output model

Open quantum system and Input-output model
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Introduction to quantum feedback control

Open quantum system

Open quantum system and master equation

FIGURE – Open quantum system : a quantum system interacting with an external
environment (a gas of particles, a heat bath, a beam of photons, etc.)

Hamiltonian approach : Htot = HS⊗1E +1S⊗HE + HI .

Markovian approach : focus on dynamics of quantum system

Master equation method : describe dynamics of quantum system by
tracing out degrees of freedom of environment
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Introduction to quantum feedback control

Open quantum system

Open quantum system and master equation 1

1 system-environment state : ρ on HS⊗HE

2 partial trace : Tr
(
TrHE

(ρ)XS
)

= Tr
(
ρ(XS⊗1E )

)
, XS on HS

3 quantum state (marginal) : ρS = TrHE
(ρ)

4 initial state (uncorrelated) : ρ(t0) = ρS(t0)⊗ρE (t0)

5 time evolution : ρ(t) = U(t, t0)
(
ρS(t0)⊗ρE (t0)

)
U∗(t, t0)

6 time evolution of quantum state : ρS(t) = TrHE

(
ρ(t)

)
7 Born-Markov approx : weak coupling + environment short memory

8 Master equation : d
dt ρS(t) = L(ρS(t)), with Lindblad generator

L(ρS) = i[HS,ρS] + ∑i
(
LiρSL∗i − 1

2 L∗i LiρS− 1
2 ρSL∗i Li

)
.

1. H. M. Wiseman, G. J. Milburn, “Quantum measurement and control, Ch3”, Cambridge, 2009.
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Introduction to quantum feedback control

Open quantum system

Input-output model for Markov quantum systems

FIGURE – A quantum system weakly coupled to a single electromagnetic field

Motivation :

allow to calculate the output field

connect field and continuous measurements

Electromagnetic field : a collection of quantum harmonic oscillators

annihilation operator bω, creation operator b∗ω

CCR : [bω,bω′ ] = 0 and [bω,b∗ω′ ] = δ(ω−ω′)

h.o. Hamiltonian : Hω = ωb∗ωbω

field Hamiltonian : HE =
∫

∞

−∞
ωb∗ωbωdω
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Introduction to quantum feedback control

Open quantum system

Input-output model for Markov quantum systems

Total Hamiltonian : Htot = HS + HE + HI ,

HE =
∫

∞

−∞

ωb∗ωbωdω, HI = i
∫

∞

−∞

κ(ω)[b∗ωC−bωC∗]dω (RWA),

with C : system operator, κ(ω) ∈ R : coupling constant.

Time evolution of bω in H.P.
d
dt bω(t) = i[HE + HI ,bω(t)] =−iωbω(t) + κ(ω)C(t),

bω(t) = e−iωt bω + κ(ω)
∫ t

0
e−iω(t−s)C(s)ds, (not Markovian)

with bω(0) = bω, C(0) = C, C(t) : time evolution of C in H.P.

Time evolution of system observable X in H.P.
d
dt X(t) = i[HS + HI ,X(t)]

= i[HS ,X(t)] +
∫

∞

−∞

κ(ω)
(
b∗ω(t)[X(t),C(t)]− [X(t),C∗(t)]bω(t)

)
dω,

with X(0) = X and C(0) = C.
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Introduction to quantum feedback control

Open quantum system

Input-output model for Markov quantum systems

First Markov approximation : κ(ω) =
√

γ/2π

Input field : bin(t) := 1√
2π

∫
∞

−∞
e−iωt bωdω satisfies

[bin(s),bin(t)] = 0, [bin(s),b∗in(t)] = δ(s− t).

∫
∞

−∞
e−iωt dω = 2πδ(t) and

∫ t
0 C(s)δ(t− s)ds = C(t)/2

Quantum Langevin equation :
d
dt X(t) = + i[HS ,X(t)] +

√
γ
(
b∗in(t)[X(t),C(t)]− [X(t),C∗(t)]bin(t)

)
+ γ
(
C∗(t)X(t)C(t)− 1

2 C∗(t)C(t)X(t)− 1
2 X(t)C∗(t)C(t)

)
bω(t) = e−iωt bω(T )−κ(ω)

∫ T
t e−iω(t−s)C(s)ds, for t < T

Output field : bout (t) := 1√
2π

∫
∞

−∞
e−iω(t−T )bω(T )dω =

√
γC(t) + bin(t)
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Introduction to quantum feedback control

Open quantum system

Quantum Langevin equation implies Master equation

In vacuum state |0〉 :

bin(t)|0〉= 〈0|b∗in(t) = 0, 〈0|0〉= 1,

White noise : x(t) := bin(t) + b∗in(t) and y(t) := ibin(t)− ib∗in(t)

〈x(t)〉 := 〈0|x(t)|0〉= 0,〈x(t)x(s)〉= δ(t− s);

〈y(t)〉 := 〈0|y(t)|0〉= 0,〈y(t)y(s)〉= δ(t− s)

ρE = |0〉〈0| and Tr(X(t)ρS⊗ρE ) = Tr(X̄(t)ρS) implies

d
dt X̄(t) = + i[HS , X̄(t)] + γ

(
C∗(t)X̄(t)C(t)− 1

2 C∗(t)C(t)X̄(t)− 1
2 X̄(t)C∗(t)C(t)

)
Tr(X̄(t)ρS) = Tr(X̄ρS(t)) implies Master equation

d
dt ρS(t) = i[HS ,ρS(t)] + γ

(
CρS(t)C∗− 1

2 C∗CρS(t)− 1
2 ρS(t)C∗C

)
.
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Introduction to quantum feedback control

Open quantum system

Input-output model undergoing homodyne detection

System-observation model (partial observations) :

d
dt X(t) = +i[HS ,X(t)] + γ

(
C∗(t)X(t)C(t)− 1

2 C∗(t)C(t)X(t)− 1
2 X(t)C∗(t)C(t)

)
+
√

γ
(
b∗in(t)[X(t),C(t)]− [X(t),C∗(t)]bin(t)

)
d
dt Yt = 1√

γ

(
bout (t) + b∗out (t)) =

(
C(t) + C∗(t)

)
+ 1√

γ

(
bin(t) + b∗in(t)

)

FIGURE – Diagram of quantum filtering setup

Quantum probability theory (conditional expectation, stochastic process)

Quantum filtering theory (explicit expression of πt (X))

Stochastic master equation (matrix-valued stochastic differential equation)
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Introduction to quantum feedback control

Classical filtering theory

Classical non-linear filtering theory

Classical non-linear filtering theory
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Introduction to quantum feedback control

Classical filtering theory

Classical probability theory

Probability space (Ω,F ,P)

* Ω : sample space, the set of all possible outcomes ;
* F : σ-algebra of subsets of Ω, a set of events ;
* P : F → [0,1] : probability measure on F .

Real-valued random variable X : Ω→ R, X−1(E) ∈ F for all E ∈ R .

Expectation of an integrable r.v. X : E(X) =
∫

ω∈Ω X(ω)dP(ω).

Theorem (Conditional expectation)

Suppose X is an integrable r.v. on (Ω,F ,P), and G ⊂ F . Then there exists a r.v.
E(X |G) called the conditional expectation of X given G s.t.

1 E(X |G) is G -measurable ;

2 for all G ∈ G , E(X1G) = E
(
E(X |G)1G

)
, where

E(X1G) =
∫

G
X(ω)dP(ω), E

(
E(X |G)1G

)
=

∫
G
E(X |G)(ω)dP(ω).
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Introduction to quantum feedback control

Classical filtering theory

Properties of conditional expectation

1 if X is independent of G , then E(X |G) = E(X) ;

2 linearity: for all α,β ∈ R, E(αX + βY |G) = αE(X |G) + βE(Y |G) ;

3 stability: if X is G -measurable, then E(X |G) = X ;

4 module property: if X is G -measurable, then E(XY |G) = XE(Y |G) ;

5 tower property: if E ⊂ G ⊂ F , then E
(
E(X |G)|E

)
= E(X |E) ;

6 law of total expectation: E
(
E(X |G)

)
= E(X).
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Introduction to quantum feedback control

Classical filtering theory

Optimal estimation

Lemma (Optimal estimation)

Let X be an integrable r.v. on (Ω,F ,P), and G ⊂ F . Then E(X |G) is the
unique G -measurable r.v. satisfying

E
((

X −E(X |G)
)2
)

= min
Y∈L2(Ω,G ,P)

E
(
(X −Y )2) .
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Introduction to quantum feedback control

Classical filtering theory

Bayes formula

Theorem (Bayes formula)

Suppose that X is an integrable r.v. on (Ω,F ,P), and G ⊂ F . Let Q� P 1

be another probability measure such that M = dP/dQ 2. Then

E(X |G) =
EQ(XM|G)

EQ(M|G)
, P−a.s.

1. P is absolutely continuous w.r.t the measure Q.
2. Radon-Nikodym derivative
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Introduction to quantum feedback control

Classical filtering theory

Brownian motion

Brownian motion

Real-valued one dimensional Brownian motion Wt can be characterized by

1 W0 = 0 ;

2 Wt is almost surely continuous ;

3 Wt has independent increments ;

4 (Wt −Ws)∼N (0, t− s), for 0≤ s ≤ t .

Rn-valued process Wt = (W 1
t , . . . ,W

n
t ) is n-dimensional Brownian motion if

W 1
t , . . . ,W

n
t are independent Brownian motions.
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Introduction to quantum feedback control

Classical filtering theory

Itô formula

Theorem (Itô formula)

Let Xt be an Itô process dXt = f (t,Xt )dt + g(t,Xt )dWt . Let h(t,x) be twice
continuously differentiable in x and once in t, then Yt = h(t,Xt ) is also an Itô
process and

dYt = L h(t,Xt )dt +
∂h
∂x

g(t,Xt )dWt ,

L h(t,Xt ) :=
∂h
∂t

+
∂h
∂x

f (t,Xt ) +
1
2

∂2h
∂x2 (t,Xt )g2(t,Xt ),

which is computed according to the following Itô rules

dtdt = dtdWt = dWt dt = 0, dWt dWt = dt.

24 / 30



Introduction to quantum feedback control

Classical filtering theory

Classical non-linear filtering theory

System-observation model (partial observations) in (Ω,F ,P) :

dxt = b(xt )dt + c(xt )dWt ,

dyt = h(xt )dt + dBt ,

x0 is F0-measurable r.v., Ft := σ{Ws,Bs|0≤ s ≤ t}
xt ∈ R : signal process of interest

yt ∈ R : observation process

Bt and Wt are two independent Brownian motion

b, c and h are bounded and Lipschitz continuous mappings

Objective

Describe the optimal estimation πt (f ) := E(f (xt )|F y
t ) of f (xt ) in L2 sense

based on the observations up to time t , F y
t := σ{ys : 0≤ s ≤ t}.
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Introduction to quantum feedback control

Classical filtering theory

Classical non-linear filtering theory

Innovations method : show innovations process is a Wiener process, express
πt (X) as integrals w.r.t time and innovations process (martingale techniques) ;

Reference probability method : define a reference probability by Girsanov
theorem, under which signals (xt ) and observations (F y

t ) are independent.

Theorem (Girsanov theorem)

Let Wt be an m-dimensional Ft -Brownian motion on (Ω,F ,{Ft}[0,T ],P). Let

Xt =
∫ t

0 Fsds + Wt for t ∈ [0,T ]. Suppose that Ft is Itô integrable and define

ET = exp
(
−

∫ T

0
(Fs)∗dWs− 1

2

∫ T

0
‖Fs‖2ds

)
.

If Novikov’s condition EP
[
exp
(

1
2

∫ T
0 ‖Fs‖2ds

)]
< ∞ is satisfied, then {Xt}t∈[0,T ] is

an Ft -Brownian motion under QT (A) = EP(ET1A), for all A ∈ FT .

Remark : ET is a martingale under P (Novikov). For all A ∈ Ft with t < T ,

QT (A) = EP(ET1A) = EP(EP(ET1A|Ft )
)

= EP(Et1A) = Qt (A)
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Introduction to quantum feedback control

Classical filtering theory

Classical filtering theory : reference probability method

System-observation model in (Ω,F ,P) with Ft := σ{Ws,Bs|0≤ s ≤ t} :

dxt = b(xt )dt + c(xt )dWt ,

dyt = h(xt )dt + dBt ,

dQt
dP = Et with Et = exp

(
−
∫ t

0 h(xt )dBt − 1
2

∫ t
0 h2(xs)ds

)
, define Mt = E−1

t

Yt =

[
Wt
yt

]
=

[
0∫ t

0 h(xs)ds

]
+

[
Wt
Bt

]
is 2-d Ft -B.M. under Qt (Girsanov).

Wt , yt and x0 are independent (x0 is F0-measurable r.v.).

Kallianpur-Striebel formula (Bayes formula)

πt (f ) := E
(
f (xt )|F y

t

)
=

EQt
(
Mt f (xt )|F y

t

)
EQt
(
Mt |F y

t

) =:
σt (f )

σt (1)
,
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Introduction to quantum feedback control

Classical filtering theory

Zakai equation

Itô formula :

Mt f (xt ) = f (x0) +
∫ t

0
MsL f (xs)ds +

∫ t

0
Ms

df
dx

c(xs)ds +
∫ t

0
Ms f (xs)dys.

Taking conditional expectation :

EQt (Mt f (xt )|F y
t ) =EQt (f (x0)|F y

t ) +EQt

(∫ t

0
MsL f (xs)ds

∣∣∣∣F y
t

)
+EQt

(∫ t

0
Ms

df
dx

c(xs)dWs

∣∣∣∣F y
t

)
+EQt

(∫ t

0
Msh(xs)f (xs)dys

∣∣∣∣F y
t

)
.

Reference probability (independence) 1 :

EQt

(∫ t

0
Fsds

∣∣∣∣F y
t

)
=

∫ t

0
EQt (Fs|F y

s )ds,

EQt

(∫ t

0
Gsdys

∣∣∣∣F y
t

)
=

∫ t

0
EQt (Gs|F y

s )dys,

EQt

(∫ t

0
GsdWs

∣∣∣∣F y
t

)
= 0.

1. J. Xiong, “An introduction to stochastic filtering theory, Ch5”, Oxford, 2008
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Introduction to quantum feedback control

Classical filtering theory

Zakai equation

EQt (Mt f (xt )|F y
t ) =EQt (f (x0)|F y

t ) +
∫ t

0
EQt (MsL f (xs)|F y

s )ds

+
∫ t

0
EQt (Msh(xs)f (xs)|F y

s )dys.

For s < t , Qt (A) = Qs(A)⇒ EQt (MsF(xs)|F y
s ) = EQs (MsF(xs)|F y

s ) = σs(F)

Zakai equation

Suppose f ∈ C 2 and all derivatives of f are bound,

σt (f ) = σ0(f ) +
∫ t

0
σs(L f )ds +

∫ t

0
σs(hf )dys, σ0(f ) = EP(f (x0)),

where (hf )(x) = h(x)f (x).
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Introduction to quantum feedback control

Classical filtering theory

Kushner-Stratonovich equation

Kallianpur-Striebel formula

πt (f ) := E
(
f (xt )|F y

t

)
=

EQt
(
Mt f (xt )|F y

t

)
EQt
(
Mt |F y

t

) =:
σt (f )

σt (1)
,

Kushner-Stratonovich equation 1

Suppose f ∈ C 2 and all derivatives of f are bound,

πt (f ) = π0(f ) +
∫ t

0
πs(L f )ds +

∫ t

0

(
πs(hf )−πs(h)πs(f )

)
dB̄s, π0(f ) = EP(f (x0)),

where dB̄t = dyt −πt (h)dt is the innovation process, which is a F y
t -Brownian

motion under P.

Remark : Kushner-Stratonovich equation is not a SDE for πt (f ), since the integrants
πs(L f ) and πs(hf ) can not be expressed as functions of πs(f ).

1. J. Xiong, “An introduction to stochastic filtering theory, Ch5”, Oxford, 2008
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