Introduction to quantum feedback control

CY-McGill Mathematical Physics Weekly Seminar

Weichao LIANG

weichao.liang@u-cergy.fr

Lab AGM/Dpt mathématiques, CY Cergy Paris Université

October 8, 2020

Outline

Outline

- 2 Brief history on quantum feedback control
- 3 Open quantum system and Input-output model
- 4 Classical non-linear filtering theory

Classical feedback control

Control objective :

- Stabilize the system towards a target state (stabilization);
- Minimize a cost function (optimal control).

- Control input is predetermined, no feedback is involved.
- Control input depends on the information through the system measurements. (Robust)

Classical feedback control

Feedback control with complete observations

Feedback control with partial observations

• $\hat{x}_t = \mathbb{E}(x_t | \sigma(y_{s \le t}))$ (MMSE), linear function $\pi_t(I) = \mathbb{E}(I(x_t) | \sigma(y_{s \le t})) = I(\hat{x}_t)$ • $\pi_t(h) = \mathbb{E}(h(x_t) | \sigma(y_{s \le t}))$: best estimation of $h(x_t)$ given $y_{s \le t}$ in L^2 (filtering)

Quantum mechanics in finite-dimensional setting

- **Density operator :** $\rho = \rho^* \in \mathbb{C}^{N \times N}$, $\operatorname{Tr}(\rho) = 1$ and $\rho \ge 0$
- **Observable :** $X = X^* \in \mathbb{C}^{N \times N}$

Evolution : closed quantum system

Schrödinger P.:
$$\dot{\rho}(t) = -i[H, \rho(t)], \quad \rho(t) = U(t)\rho(0)U^*(t);$$

Heisenberg P.: $\dot{X}(t) = i[H, X(t)], \quad X(t) = U^*(t)X(0)U(t),$

where $H = H^*$, $U(t)U^*(t) = 1$ and $Tr(X(t)\rho(0)) = Tr(X(0)\rho(t))$.

Quantum feedback control

FIGURE – Experiment setup for feedback control of spin system, which interacts with an optical field measured continuously by homodyne detection. A magnetic field is used for the feedback ¹.

^{1.} R. van Handel, J.K. Stockton, H.Mabuchi, IEEE TAC, 2005.

Problems on quantum feedback control

- 1 How to model the system-field interaction?
- 2 How to model the continuous measurement of the field?
- B How to estimate the state of the system based on the measurements?
- 4 How to design a feedback controller to achieve a control goal?

Lecture outline

- Input-output model, classical filtering theory;
- 2 Quantum probability theory, quantum filtering theory;
- 3 Stochastic control theory, literature reviews²³;
- 4 Exponential feedback stabilization of qubit / 2-qubit systems;
- 5 Exponential feedback stabilization of spin-J / N-qubit systems;
- 6 Robustness of stabilizing qubit systems (unknown initial states);
- 7 Robustness of stabilizing spin-J systems (unknown initial states);
- B Discussion on insufficient computing power.

^{1.} R. van Handel, J.K. Stockton, H.Mabuchi, "Feedback control of quantum state reduction", IEEE TAC, 2005.

^{2.} M. Mirrahimi, R. van Handel, "Stabilizing feedback controls for quantum systems", SIAM J Control Optim, 2007.

History on quantum feedback control

Brief history on quantum feedback control

- **Belavkin**¹ (1970s) : quantum analogous of stochastic control theory, Belavkin quantum filtering equation (estimation).
- 2 Hudson, Parthasarathy² (1984) : quantum stochastic calculus and quantum Itô formula.
- **Gardiner, Collett**³ (1985) : quantum analogous of input-output model, quantum Langevin equation.
- **4 Carmichael**⁴ et al. (1990s) : quantum trajectory theory (simulation).
- **5** Bouten, van Handel, James⁵ (2007) : morden formulation of Belavin's work.
- **6** Serge Haroche, David Wineland : Nobel Prize in Physics in 2012.

4. H. Carmichael, "An Open Systems Approach to Quantum Optics", Springer, 1993.

^{1.} https://www.maths.nottingham.ac.uk/plp/vpb/vpb_research.html

^{2.} R. L. Hudson, K. R. Parthasarathy, "Quantum Ito's formula and stochastic evolutions", Commun. Math Phys, 1984.

^{3.} C. W. Gardiner, M. J. Collett, "Input and output in damped quantum systems : Quantum stochastic differential equation and master equation", PRA, 1985.

^{5.} L. Bouten, R. van Handel, M. James, "An introduction to quantum filtering", SIAM. J. Control Optim, 2007.

Open quantum system and Input-output model

Open quantum system and Input-output model

Open quantum system and master equation

FIGURE – Open quantum system : a quantum system interacting with an external environment (a gas of particles, a heat bath, a beam of photons, etc.)

- Hamiltonian approach : $H_{tot} = H_S \otimes \mathbb{1}_E + \mathbb{1}_S \otimes H_E + H_I$.
- Markovian approach : focus on dynamics of quantum system
- Master equation method : describe dynamics of quantum system by tracing out degrees of freedom of environment

Open quantum system and master equation ¹

- 1 system-environment state : ρ on $\mathcal{H}_S \otimes \mathcal{H}_E$
- 2 partial trace : $\operatorname{Tr}(\operatorname{Tr}_{\mathcal{H}_{E}}(\rho)X_{S}) = \operatorname{Tr}(\rho(X_{S} \otimes \mathbb{1}_{E})), X_{S} \text{ on } \mathcal{H}_{S}$
- 3 quantum state (marginal) : $\rho_{S} = Tr_{\mathcal{H}_{F}}(\rho)$
- 4 initial state (uncorrelated) : $\rho(t_0) = \rho_S(t_0) \otimes \rho_E(t_0)$
- 5 time evolution : $\rho(t) = U(t, t_0) (\rho_S(t_0) \otimes \rho_E(t_0)) U^*(t, t_0)$
- **6** time evolution of quantum state : $\rho_{S}(t) = \text{Tr}_{\mathcal{H}_{E}}(\rho(t))$
- 7 Born-Markov approx : weak coupling + environment short memory
- **B** Master equation : $\frac{d}{dt}\rho_{S}(t) = \mathcal{L}(\rho_{S}(t))$, with Lindblad generator

$$\mathcal{L}(\rho_{\mathcal{S}}) = i[H_{\mathcal{S}}, \rho_{\mathcal{S}}] + \sum_{i} \left(L_{i} \rho_{\mathcal{S}} L_{i}^{*} - \frac{1}{2} L_{i}^{*} L_{i} \rho_{\mathcal{S}} - \frac{1}{2} \rho_{\mathcal{S}} L_{i}^{*} L_{i} \right).$$

^{1.} H. M. Wiseman, G. J. Milburn, "Quantum measurement and control, Ch3", Cambridge, 2009.

Input-output model for Markov quantum systems

FIGURE – A quantum system weakly coupled to a single electromagnetic field

Motivation :

- allow to calculate the output field
- connect field and continuous measurements

Electromagnetic field : a collection of quantum harmonic oscillators

- annihilation operator b_{ω} , creation operator b_{ω}^*
- CCR : $[b_{\omega}, b_{\omega'}] = 0$ and $[b_{\omega}, b_{\omega'}^*] = \delta(\omega \omega')$
- h.o. Hamiltonian : $H_{\omega} = \omega b_{\omega}^* b_{\omega}$
- field Hamiltonian : $H_E = \int_{-\infty}^{\infty} \omega b_{\omega}^* b_{\omega} d\omega$

Input-output model for Markov quantum systems

Total Hamiltonian :
$$H_{tot} = H_S + H_E + H_I$$
,
 $H_E = \int_{-\infty}^{\infty} \omega b_{\omega}^* b_{\omega} d\omega$, $H_I = i \int_{-\infty}^{\infty} \kappa(\omega) [b_{\omega}^* C - b_{\omega} C^*] d\omega$ (RWA),

with ${\it C}$: system operator, $\kappa(\omega)\in\mathbb{R}$: coupling constant.

Time evolution of b_ω in H.P.

$$\begin{split} \frac{d}{dt}b_{\omega}(t) &= i[H_{E} + H_{I}, b_{\omega}(t)] = -i\omega b_{\omega}(t) + \kappa(\omega)C(t), \\ b_{\omega}(t) &= e^{-i\omega t}b_{\omega} + \kappa(\omega)\int_{0}^{t}e^{-i\omega(t-s)}C(s)ds, \text{ (not Markovian)} \\ \text{with } b_{\omega}(0) &= b_{\omega}, C(0) = C, C(t): \text{time evolution of } C \text{ in H.P.} \end{split}$$

Time evolution of system observable X in H.P.

$$\frac{d}{dt}X(t) = i[H_{S} + H_{I}, X(t)]$$

$$= i[H_{S}, X(t)] + \int_{-\infty}^{\infty} \kappa(\omega) (b_{\omega}^{*}(t)[X(t), C(t)] - [X(t), C^{*}(t)]b_{\omega}(t))d\omega,$$
with $X(0) = X$ and $C(0) = C$.

Input-output model for Markov quantum systems

First Markov approximation : $\kappa(\omega) = \sqrt{\gamma/2\pi}$

Input field :
$$b_{in}(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} b_{\omega} d\omega$$
 satisfies
 $[b_{in}(s), b_{in}(t)] = 0, \quad [b_{in}(s), b_{in}^*(t)] = \delta(s-t).$

$$\int_{-\infty}^{\infty} e^{-i\omega t} d\omega = 2\pi \delta(t) \text{ and } \int_{0}^{t} C(s) \delta(t-s) ds = C(t)/2$$

Quantum Langevin equation :

$$\frac{d}{dt}X(t) = +i[H_S, X(t)] + \sqrt{\gamma} (b_{in}^*(t)[X(t), C(t)] - [X(t), C^*(t)]b_{in}(t)) + \gamma (C^*(t)X(t)C(t) - \frac{1}{2}C^*(t)C(t)X(t) - \frac{1}{2}X(t)C^*(t)C(t))$$

•
$$b_{\omega}(t) = e^{-i\omega t} b_{\omega}(T) - \kappa(\omega) \int_{t}^{T} e^{-i\omega(t-s)} C(s) ds$$
, for $t < T$

• Output field :
$$b_{out}(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega(t-T)} b_{\omega}(T) d\omega = \sqrt{\gamma} C(t) + b_{in}(t)$$

Quantum Langevin equation implies Master equation

In vacuum state $|0\rangle$:

• White noise :
$$x(t) := b_{in}(t) + b_{in}^*(t)$$
 and $y(t) := ib_{in}(t) - ib_{in}^*(t)$
 $\langle x(t) \rangle := \langle 0|x(t)|0 \rangle = 0, \langle x(t)x(s) \rangle = \delta(t-s);$
 $\langle y(t) \rangle := \langle 0|y(t)|0 \rangle = 0, \langle y(t)y(s) \rangle = \delta(t-s)$

•
$$\rho_E = |0\rangle\langle 0|$$
 and $\operatorname{Tr}(X(t)\rho_S \otimes \rho_E) = \operatorname{Tr}(\bar{X}(t)\rho_S)$ implies
 $\frac{d}{dt}\bar{X}(t) = +i[H_S,\bar{X}(t)] + \gamma(C^*(t)\bar{X}(t)C(t) - \frac{1}{2}C^*(t)C(t)\bar{X}(t) - \frac{1}{2}\bar{X}(t)C^*(t)C(t))$

Tr(
$$\bar{X}(t)\rho_{S}$$
) = Tr($\bar{X}\rho_{S}(t)$) implies Master equation

$$\frac{d}{dt}\rho_{S}(t) = i[H_{S},\rho_{S}(t)] + \gamma(C\rho_{S}(t)C^{*} - \frac{1}{2}C^{*}C\rho_{S}(t) - \frac{1}{2}\rho_{S}(t)C^{*}C).$$

Input-output model undergoing homodyne detection

System-observation model (partial observations) :

$$\begin{aligned} \frac{d}{dt}X(t) &= +i[H_{S}, X(t)] + \gamma (C^{*}(t)X(t)C(t) - \frac{1}{2}C^{*}(t)C(t)X(t) - \frac{1}{2}X(t)C^{*}(t)C(t)) \\ &+ \sqrt{\gamma} (b_{in}^{*}(t)[X(t), C(t)] - [X(t), C^{*}(t)]b_{in}(t)) \\ \frac{d}{dt}Y_{t} &= \frac{1}{\sqrt{\gamma}} (b_{out}(t) + b_{out}^{*}(t)) = (C(t) + C^{*}(t)) + \frac{1}{\sqrt{\gamma}} (b_{in}(t) + b_{in}^{*}(t)) \end{aligned}$$

FIGURE – Diagram of quantum filtering setup

- Quantum probability theory (conditional expectation, stochastic process)
- **Quantum filtering theory** (explicit expression of $\pi_t(X)$)
- Stochastic master equation (matrix-valued stochastic differential equation)

Classical non-linear filtering theory

Classical non-linear filtering theory

Classical probability theory

■ Probability space (Ω, *F*, P)

- * Ω : sample space, the set of all possible outcomes ;
- * \mathcal{F} : σ -algebra of subsets of Ω , a set of events ;
- * $\mathbb{P}: \mathcal{F} \to [0,1]$: probability measure on \mathcal{F} .
- Real-valued random variable $X : \Omega \to \mathbb{R}, X^{-1}(E) \in \mathcal{F}$ for all $E \in \mathcal{R}$.

Expectation of an integrable r.v. $X : \mathbb{E}(X) = \int_{\omega \in \Omega} X(\omega) d\mathbb{P}(\omega)$.

Theorem (Conditional expectation)

Suppose X is an integrable r.v. on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathcal{G} \subset \mathcal{F}$. Then there exists a r.v. $\mathbb{E}(X|\mathcal{G})$ called the **conditional expectation** of X given \mathcal{G} s.t.

1
$$\mathbb{E}(X|G)$$
 is *G*-measurable;

2 for all
$$G \in \mathcal{G}$$
, $\mathbb{E}(X \mathbb{1}_G) = \mathbb{E}(\mathbb{E}(X|\mathcal{G})\mathbb{1}_G)$, where
 $\mathbb{E}(X \mathbb{1}_G) = \int_G X(\omega) d\mathbb{P}(\omega)$, $\mathbb{E}(\mathbb{E}(X|\mathcal{G})\mathbb{1}_G) = \int_G \mathbb{E}(X|\mathcal{G})(\omega) d\mathbb{P}(\omega)$

Properties of conditional expectation

- **1** if *X* is independent of *G*, then $\mathbb{E}(X|G) = \mathbb{E}(X)$;
- 2 linearity: for all $\alpha, \beta \in \mathbb{R}$, $\mathbb{E}(\alpha X + \beta Y | \mathcal{G}) = \alpha \mathbb{E}(X | \mathcal{G}) + \beta \mathbb{E}(Y | \mathcal{G})$;
- **3** stability: if *X* is *G*-measurable, then $\mathbb{E}(X|G) = X$;
- 4 module property: if X is \mathcal{G} -measurable, then $\mathbb{E}(XY|\mathcal{G}) = X\mathbb{E}(Y|\mathcal{G})$;
- 5 tower property: if $\mathcal{E} \subset \mathcal{G} \subset \mathcal{F}$, then $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{E}) = \mathbb{E}(X|\mathcal{E})$;
- **6** law of total expectation: $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$.

Optimal estimation

Lemma (Optimal estimation)

Let *X* be an integrable r.v. on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathcal{G} \subset \mathcal{F}$. Then $\mathbb{E}(X|\mathcal{G})$ is the unique \mathcal{G} -measurable r.v. satisfying

$$\mathbb{E}\left(\left(X - \mathbb{E}(X|\mathcal{G})\right)^{2}\right) = \min_{Y \in L^{2}(\Omega,\mathcal{G},\mathbb{P})} \mathbb{E}\left((X - Y)^{2}\right)$$

Bayes formula

Theorem (Bayes formula)

Suppose that X is an integrable r.v. on $(\Omega, \mathcal{F}, \mathbb{P})$, and $\mathcal{G} \subset \mathcal{F}$. Let $\mathbb{Q} \gg \mathbb{P}^1$ be another probability measure such that $M = d\mathbb{P}/d\mathbb{Q}^2$. Then

$$\mathbb{E}(X|\mathcal{G}) = \frac{\mathbb{E}^{\mathbb{Q}}(XM|\mathcal{G})}{\mathbb{E}^{\mathbb{Q}}(M|\mathcal{G})}, \quad \mathbb{P}-a.s.$$

^{1.} $\mathbb P$ is absolutely continuous w.r.t the measure $\mathbb Q.$

^{2.} Radon-Nikodym derivative

Brownian motion

Brownian motion

Real-valued one dimensional Brownian motion W_t can be characterized by

- 1 $W_0 = 0;$
- 2 W_t is almost surely continuous;
- 3 Wt has independent increments;
- 4 $(W_t W_s) \sim \mathcal{N}(0, t s)$, for $0 \le s \le t$.

 \mathbb{R}^{n} -valued process $W_{t} = (W_{t}^{1}, \dots, W_{t}^{n})$ is *n*-dimensional Brownian motion if $W_{t}^{1}, \dots, W_{t}^{n}$ are **independent** Brownian motions.

Itô formula

Theorem (Itô formula)

Let X_t be an Itô process $dX_t = f(t, X_t)dt + g(t, X_t)dW_t$. Let h(t, x) be twice continuously differentiable in x and once in t, then $Y_t = h(t, X_t)$ is also an Itô process and

$$dY_t = \mathscr{L}h(t, X_t)dt + \frac{\partial h}{\partial x}g(t, X_t)dW_t,$$

$$\mathscr{L}h(t, X_t) := \frac{\partial h}{\partial t} + \frac{\partial h}{\partial x}f(t, X_t) + \frac{1}{2}\frac{\partial^2 h}{\partial x^2}(t, X_t)g^2(t, X_t)$$

which is computed according to the following Itô rules

$$dtdt = dtdW_t = dW_t dt = 0, \quad dW_t dW_t = dt.$$

Classical non-linear filtering theory

System-observation model (partial observations) in $(\Omega, \mathcal{F}, \mathbb{P})$:

$$dx_t = b(x_t)dt + c(x_t)dW_t,$$

 $dy_t = h(x_t)dt + dB_t,$

•
$$x_0$$
 is \mathcal{F}_0 -measurable r.v., $\mathcal{F}_t := \sigma\{W_s, B_s | 0 \le s \le t\}$

- $x_t \in \mathbb{R}$: signal process of interest
- $y_t \in \mathbb{R}$: observation process
- **\blacksquare** *B_t* and *W_t* are two independent Brownian motion
- *b*, *c* and *h* are bounded and Lipschitz continuous mappings

Objective

Describe the optimal estimation $\pi_t(f) := \mathbb{E}(f(x_t)|\mathcal{F}_t^y)$ of $f(x_t)$ in L^2 sense based on the observations up to time t, $\mathcal{F}_t^y := \sigma\{y_s : 0 \le s \le t\}$.

Classical non-linear filtering theory

- Innovations method : show innovations process is a Wiener process, express π_t(X) as integrals w.r.t time and innovations process (martingale techniques);
- Reference probability method : define a reference probability by Girsanov theorem, under which signals (x_t) and observations (\(\mathcal{F}_t^{\negar{y}}\)) are independent.

Theorem (Girsanov theorem)

Let W_t be an m-dimensional \mathcal{F}_t -Brownian motion on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{[0,T]}, \mathbb{P})$. Let $X_t = \int_0^t F_s ds + W_t$ for $t \in [0, T]$. Suppose that F_t is Itô integrable and define $\mathfrak{E}_T = \exp\left(-\int_0^T (F_s)^* dW_s - \frac{1}{2}\int_0^T ||F_s||^2 ds\right)$. If Novikov's condition $\mathbb{E}^{\mathbb{P}}\left[\exp\left(\frac{1}{2}\int_0^T ||F_s||^2 ds\right)\right] < \infty$ is satisfied, then $\{X_t\}_{t \in [0,T]}$ is

an \mathcal{F}_t -**Brownian motion** under $\mathbb{Q}_T(A) = \mathbb{E}^{\mathbb{P}'}(\mathfrak{E}_T \mathbb{1}_A)$, for all $A \in \mathcal{F}_T$.

Remark : \mathfrak{E}_T is a martingale under \mathbb{P} (Novikov). For all $A \in \mathcal{F}_t$ with t < T, $\mathbb{Q}_T(A) = \mathbb{E}^{\mathbb{P}}(\mathfrak{E}_T \mathbb{1}_A) = \mathbb{E}^{\mathbb{P}}(\mathbb{E}_T \mathfrak{1}_A | \mathcal{F}_t)) = \mathbb{E}^{\mathbb{P}}(\mathfrak{E}_t \mathbb{1}_A) = \mathbb{Q}_t(A)$

Classical filtering theory : reference probability method

System-observation model in $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathcal{F}_t := \sigma\{W_s, B_s | 0 \le s \le t\}$:

 $dx_t = b(x_t)dt + c(x_t)dW_t,$ $dy_t = h(x_t)dt + dB_t,$

$$\frac{d\mathbb{Q}_t}{d\mathbb{P}} = \mathfrak{E}_t \text{ with } \mathfrak{E}_t = \exp\left(-\int_0^t h(x_t) dB_t - \frac{1}{2} \int_0^t h^2(x_s) ds\right), \text{ define } M_t = \mathfrak{E}_t^{-1}$$
$$Y_t = \begin{bmatrix} W_t \\ y_t \end{bmatrix} = \begin{bmatrix} 0 \\ \int_0^t h(x_s) ds \end{bmatrix} + \begin{bmatrix} W_t \\ B_t \end{bmatrix} \text{ is } 2\text{-d } \mathcal{F}_t\text{-B.M. under } \mathbb{Q}_t \text{ (Girsanov).}$$

■ W_t , y_t and x_0 are **independent** (x_0 is \mathcal{F}_0 -measurable r.v.).

Kallianpur-Striebel formula (Bayes formula)

$$\pi_t(f) := \mathbb{E}(f(x_t)|\mathcal{F}_t^y) = \frac{\mathbb{E}^{\mathbb{Q}_t}(M_t f(x_t)|\mathcal{F}_t^y)}{\mathbb{E}^{\mathbb{Q}_t}(M_t|\mathcal{F}_t^y)} =: \frac{\sigma_t(f)}{\sigma_t(1)}$$

Zakai equation

Itô formula :

$$M_t f(x_t) = f(x_0) + \int_0^t M_s \mathscr{L} f(x_s) ds + \int_0^t M_s \frac{df}{dx} c(x_s) ds + \int_0^t M_s f(x_s) dy_s$$

Taking conditional expectation :

$$\mathbb{E}^{\mathbb{Q}_{t}}(M_{t}f(x_{t})|\mathcal{F}_{t}^{y}) = \mathbb{E}^{\mathbb{Q}_{t}}(f(x_{0})|\mathcal{F}_{t}^{y}) + \mathbb{E}^{\mathbb{Q}_{t}}\left(\int_{0}^{t} M_{s} \mathscr{L}f(x_{s})ds \middle| \mathcal{F}_{t}^{y}\right) \\ + \mathbb{E}^{\mathbb{Q}_{t}}\left(\int_{0}^{t} M_{s} \frac{df}{dx}c(x_{s})dW_{s} \middle| \mathcal{F}_{t}^{y}\right) + \mathbb{E}^{\mathbb{Q}_{t}}\left(\int_{0}^{t} M_{s}h(x_{s})f(x_{s})dy_{s} \middle| \mathcal{F}_{t}^{y}\right)$$

Reference probability (independence)¹:

$$\begin{split} & \mathbb{E}^{\mathbb{Q}_{t}}\left(\int_{0}^{t}F_{s}ds\bigg|\mathcal{F}_{t}^{y}\right) = \int_{0}^{t}\mathbb{E}^{\mathbb{Q}_{t}}(F_{s}|\mathcal{F}_{s}^{y})ds, \\ & \mathbb{E}^{\mathbb{Q}_{t}}\left(\int_{0}^{t}G_{s}dy_{s}\bigg|\mathcal{F}_{t}^{y}\right) = \int_{0}^{t}\mathbb{E}^{\mathbb{Q}_{t}}(G_{s}|\mathcal{F}_{s}^{y})dy_{s} \\ & \mathbb{E}^{\mathbb{Q}_{t}}\left(\int_{0}^{t}G_{s}dW_{s}\bigg|\mathcal{F}_{t}^{y}\right) = 0. \end{split}$$

^{1.} J. Xiong, "An introduction to stochastic filtering theory, Ch5", Oxford, 2008

Zakai equation

$$\mathbb{E}^{\mathbb{Q}_t}(M_t f(x_t)|\mathcal{F}_t^y) = \mathbb{E}^{\mathbb{Q}_t}(f(x_0)|\mathcal{F}_t^y) + \int_0^t \mathbb{E}^{\mathbb{Q}_t}(M_s \mathscr{L}f(x_s)|\mathcal{F}_s^y) ds \\ + \int_0^t \mathbb{E}^{\mathbb{Q}_t}(M_s h(x_s)f(x_s)|\mathcal{F}_s^y) dy_s.$$

For
$$s < t$$
, $\mathbb{Q}_t(A) = Q_s(A) \Rightarrow \mathbb{E}^{\mathbb{Q}_t}(M_s F(x_s) | \mathcal{F}_s^y) = \mathbb{E}^{\mathbb{Q}_s}(M_s F(x_s) | \mathcal{F}_s^y) = \sigma_s(F)$

Zakai equation

Suppose $f \in C^2$ and all derivatives of f are bound,

$$\sigma_t(f) = \sigma_0(f) + \int_0^t \sigma_s(\mathscr{L}f) ds + \int_0^t \sigma_s(hf) dy_s, \quad \sigma_0(f) = \mathbb{E}^{\mathbb{P}}(f(x_0)),$$

where (hf)(x) = h(x)f(x).

Kushner-Stratonovich equation

Kallianpur-Striebel formula

$$\pi_t(f) := \mathbb{E}(f(x_t)|\mathcal{F}_t^{\mathcal{Y}}) = \frac{\mathbb{E}^{\mathbb{Q}_t}(M_t f(x_t)|\mathcal{F}_t^{\mathcal{Y}})}{\mathbb{E}^{\mathbb{Q}_t}(M_t|\mathcal{F}_t^{\mathcal{Y}})} =: \frac{\sigma_t(f)}{\sigma_t(1)},$$

Kushner-Stratonovich equation¹

Suppose $f \in C^2$ and all derivatives of f are bound,

$$\pi_t(f) = \pi_0(f) + \int_0^t \pi_s(\mathscr{L}f) ds + \int_0^t \left(\pi_s(hf) - \pi_s(h)\pi_s(f)\right) d\bar{B}_s, \quad \pi_0(f) = \mathbb{E}^{\mathbb{P}}(f(x_0)),$$

where $d\bar{B}_t = dy_t - \pi_t(h)dt$ is the **innovation process**, which is a \mathcal{F}_t^y -Brownian motion under \mathbb{P} .

Remark : Kushner-Stratonovich equation is not a SDE for $\pi_t(f)$, since the integrants $\pi_s(\mathscr{L}f)$ and $\pi_s(hf)$ can not be expressed as functions of $\pi_s(f)$.

^{1.} J. Xiong, "An introduction to stochastic filtering theory, Ch5", Oxford, 2008