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Demand for computation

Computate intensive applicationsMobility scenarios



Moore’s Law



Power density problem



Trends in SoCs



Trends in SoCs



Network on Chip (NoC) Paradigm



Communication Architectures
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Communication Architectures

5. Network-on-Chip

A Network-on-chip (NoC) is a 
packet switched on-chip 
communication network designed 
using a layered methodology.
It "routes packets, not wires”.
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Network-on-Chip

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

NoCs are an attempt to scale down 
the concepts of largescale networks, 
and apply them to the embedded 
System-on-Chip (SoC) domain



Network-on-Chip
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NI

Tile

IP Core + Network Interface (NI) + Router (R)



Network-on-Chip: Properties

• Regular geometry that is scalable
• Flexible QoS guarantees
• Higher bandwidth
• Reusable components
• Buffers, arbiters, routers, protocol stack

• No long global wires (or global clock tree)
• No problematic global synchronization
• GALS: Globally asynchronous, locally synchronous design

• Reliable and predictable electrical and physical properties



Heterogeneous

Network-on-Chip: Homogeneous vs. Heterogeneous

Homogeneous



• Each tile is a simple processor
• Easy tile replication (scalability, 

predictability)
• Less performance
• Low network resource utilization

Network-on-Chip: Homogeneous vs. Heterogeneous

Homogeneous



Heterogeneous

Network-on-Chip: Homogeneous vs. Heterogeneous

• IPs can be: General purpose/DSP 
processor, Memory, FPGA, I/O 
core
• Better fit to application domain
• Most modern systems are 

heterogeneous
• Topology synthesis: more difficult
• Needs specialized routing



Network-on-Chip: Performance

Factors that influence the performance of a NoC are
• Topology
• Router Architecture
• Routing Technique
• Flow Control
• Traffic Pattern



NoC Topologies

• Direct Topologies

• Indirect Topologies

• Irregular or ad-hoc network topologies
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Taxonomy of Routing Algorithms

Oblivious
• Deterministic
• Random

Adaptive

Minimal

Non-minimal



Routing and Selection

• The routing algorithm can be represented as a routing relation R and 
a selection function S
• R returns a set of paths or channels and S selects between the route

to be taken
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Flow Control

• Flow Control can be viewed as a problem of
• Resource allocation
• Contention resolution

• Resources in form of channels, buffers and state must be allocated to 
each packet
• If two packets compete for the same channel flow control can only

assign the channel to one packet, but must also deal with the other
packet



Flow Control

Flow Control can be divided into:
• Bufferless flow control: Packets are either dropped or misrouted
• Buffered flow control: Packets that cannot be routed via the desired

channel are stored in buffers



Data Units



Emerging NoC Architectures



Emerging NoC tecnologies

• Optical NoC
• RF-NoC
• Hybrid NoC



Wireless NoC Motivation

)𝐷 = 2( 𝑛 − 1

)𝐸!"#$ = 𝑛(𝐸%&#$'( + 𝐸"#)*

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE



Wireless NoC elements



RF-NoC Architecture



RF-NoC Architecture: OFDMA

Source: https://www.rfglobalnet.com/doc/wi-fi-s-ofdma-challenges-make-verification-crucial-0001

https://www.rfglobalnet.com/doc/wi-fi-s-ofdma-challenges-make-verification-crucial-0001


RF-NoC Architecture: OFDMA
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RF-NoC Architecture



Design and Simulation



Design Space Exploration

Application Architecture

Mapping

Analysis



Design Space Exploration for NoC Architectures

Ogras et al., ASAP'05



The Mapping Problem
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Noxim: NoC Simulator

• Cycle accurate, Open Source:
• https://github.com/davidepatti/noxim

• SystemC signals level simulation in C++
• Performance & Power estimation
• Modular plugin-like addition of Routing/Selection strategies
• Wireless transmissions simulation

Catania et al., ACM TOMACS 2016

https://github.com/davidepatti/noxim


Noxim: Simulation Flow

Topology & Structure
• size (number of nodes)
• Buffers
• wireless channels

Workload
• packet size
• injection rate
• traffic distribution

Dynamic behaviour
• routing strategy
• wireless access

Simulation Runtime
• duration (cycles)
• statistics collection …

…



Noxim: Default Scenario

Mesh of Tile nodes
• Each Tile, as aforementioned,  

contains a Router and a 
Processing Element (PE)
• Each Tile is connected to the 4 

neighbors (N, S, E, W)
• Optionally, some nodes can be 

connected to Radio-hub allowing 
wireless transmissions.



Noxim: What can be done?

• Design Space Exploration
• Effect of Traffic Patterns
• Power Estimation
• Comparison Analysis

Perform 
simulations

Two main approaches

• New Routing Algorithms
• Different topologies
• Power Saving Strategies
• And so on …

Modify
Source code



Design Space Exploration

Application Architecture
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Analysis



Simulation Framework

• With Noxim it is possible to simulate application traffic starting from
• Common traffic models
• Input traffic table

It could be a limitation when specific real application traffic is needed



Simulation Framework: Sniper

For this purpose we get help from a different tool, a system-level 
simulator called Sniper.

“Sniper is a next generation parallel, high-speed and accurate x86 
simulator. This multi-core simulator is based on the interval core 

model and the Graphite simulation infrastructure, allowing for fast and 
accurate simulation and for trading off simulation speed for accuracy to 

allow a range of flexible simulation options when exploring different 
homogeneous and heterogeneous multi-core architectures.”

Source: http://snipersim.org/w/The_Sniper_Multi-Core_Simulator

http://snipersim.org/w/The_Sniper_Multi-Core_Simulator
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Simulation Framework

Sniper
Simulator

Trace 
Files

• Application/Benchmark
• Application/Benchmark 

parameters
• Architectural parameters

•NoC micro-architectural 
parameters
• RF Parameters
• Simulation parameters

Noxim
Simulator

Params
Extraction

Params
Refinement

Cycle-accurate estimation of 
power and latency figures

System-level simulation

RF-NoC simulation



Applications



Application Development Trends

• Spread of applications exploiting Artificial Intelligence (AI)

• In particular Machine Learning (ML) applications

• Through Deep Learning (DL) techniques

AI
ML

DL



Application Development Trends

Some examples using Neural Networks:
• Visual data processing
• Speech and audio processing
• Autonomous driving

Again two main domains of interest:
• High-Performance Computing 
• Resource constrained devices



Neural Networks
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Deep Neural Networks (DNNs)
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Neural Networks: Perceptron Model
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Neural Networks: House Price Prediction

Source: Deep Learning Specialization - Prof. Andrew Ng
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Source: Deep Learning Specialization - Prof. Andrew Ng
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Neural Networks: some applications

Output (y) ApplicationInput(x)

Click on ad? (0/1) Online AdvertisingAd, user info

Price Real EstateHome features

Text transcript Speech recognitionAudio

Chinese Machine translationEnglish

Object (1,…,1000) Photo taggingImage

Position of other cars Autonomous drivingImage, Radar info

Source: Deep Learning Specialization - Prof. Andrew Ng
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Neural Networks: Perceptron Model
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Neural Networks: How to use them
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Two modes:
1. Training 
2. Inference



Popular DNN Models 

* Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification) 

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT



Key metrics for an implementation

• Accuracy
• Throughput
• Latency
• Energy and Power consumption
• HW cost
• Flexibility
• Scalability

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT



Key design objectives for an implementation

• Increase Throughput and Reduce Latency 
• Avoid unnecessary MACs (save cycles)
• Increase number of processing elements (PE)
• Increase PE utilization

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT



Key design objectives for an implementation

Inference latency and energy dominated by
• Memory sub-system 
• Communication sub-system

Memory traffic dominated by model parameters



Hardware implementation



Hardware implementation: Weight Compression
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Selective Layers Compression Technique in Deep Neural Network Accelerators, 
H. Lahdhiri et al., 2020



Hardware implementation: Weight Compression

Selective Layers Compression Technique in Deep Neural Network Accelerators, 
H. Lahdhiri et al., 2020
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Hardware implementation: Weight Compression
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