Design and Application of Energy Efficient Emerging NoC Architectures (E3NoC)

Salvatore Monteleone, PhD

Agenda

- Introduction
- Network on Chip (NoC) Paradigm
- Emerging NoC Architectures
- Design and Simulation
- Applications

Introduction

Demand for computation

Mobility scenarios

Computate intensive applications

Moore's Law

Power density problem

The growing power density (measured in W/cm2) of Intel's microchip processor families. (Source: Intel)

Trends in SoCs

Trends in SoCs

Network on Chip (NoC) Paradigm

Communication Architectures

3. Hierarchical Bus

2. Shared Bus

4. Bus Matrix

Communication Architectures

A Network-on-chip (NoC) is a packet switched on-chip communication network designed using a layered methodology.

It "routes packets, not wires".

5. Network-on-Chip

Network-on-Chip

NoCs are an attempt to scale down the concepts of largescale networks, and apply them to the embedded System-on-Chip (SoC) domain

Network-on-Chip

Network-on-Chip: Properties

- Regular geometry that is scalable
- Flexible QoS guarantees
- Higher bandwidth
- Reusable components
 - Buffers, arbiters, routers, protocol stack
- No long global wires (or global clock tree)
 - No problematic global synchronization
 - GALS: Globally asynchronous, locally synchronous design
- Reliable and predictable electrical and physical properties

Network-on-Chip: Homogeneous vs. Heterogeneous

Homogeneous

Heterogeneous

Network-on-Chip: Homogeneous vs. Heterogeneous

Homogeneous

- Each tile is a simple processor
- Easy tile replication (scalability, predictability)
- Less performance
- Low network resource utilization

Network-on-Chip: Homogeneous vs. Heterogeneous

- IPs can be: General purpose/DSP processor, Memory, FPGA, I/O core
- Better fit to application domain
- Most modern systems are heterogeneous
- Topology synthesis: more difficult
- Needs specialized routing

Heterogeneous

Network-on-Chip: Performance

Factors that influence the performance of a NoC are

- Topology
- Router Architecture
- Routing Technique
- Flow Control
- Traffic Pattern

NoC Topologies

• Direct Topologies

• Indirect Topologies

Irregular or ad-hoc network topologies

Router Architecture

Taxonomy of Routing Algorithms

Oblivious

- Deterministic
- Random

Adaptive

Minimal

Non-minimal

Routing and Selection

- The routing algorithm can be represented as a *routing relation R* and a *selection function S*
- *R* returns a set of paths or channels and *S* selects between the route to be taken

Flow Control

- Flow Control can be viewed as a problem of
 - Resource allocation
 - Contention resolution
- Resources in form of channels, buffers and state must be allocated to each packet
- If two packets compete for the same channel flow control can only assign the channel to one packet, but must also deal with the other packet

Flow Control

Flow Control can be divided into:

- Bufferless flow control: Packets are either dropped or misrouted
- Buffered flow control: Packets that cannot be routed via the desired channel are stored in buffers

Data Units

Emerging NoC Architectures

Emerging NoC tecnologies

- Optical NoC
- RF-NoC
- Hybrid NoC

Graphene-enabled Wireless NoC

(for control and light flows of data)

Inherent broadcast/multicast

Reconfigurability

Photonic NoC

(for heavy flows of data)

- Extremely high bandwidth
- Low power consumption

Wireless NoC Motivation

$$D = 2(\sqrt{n} - 1)$$

$$E_{flit} = n(E_{switch} + E_{link})$$

Wireless NoC elements

RF-NoC Architecture

RF-NoC Architecture: OFDMA

Source: <u>https://www.rfglobalnet.com/doc/wi-fi-s-ofdma-challenges-make-verification-crucial-0001</u>

RF-NoC Architecture: OFDMA

Orthogonal Frequency-Division Multiple Access (OFDMA) block diagram

RF-NoC Architecture

Design and Simulation

Design Space Exploration

Design Space Exploration for NoC Architectures

Ogras et al., ASAP'05

The Mapping Problem

Noxim: NoC Simulator

- Cycle accurate, Open Source:
 - <u>https://github.com/davidepatti/noxim</u>
- SystemC signals level simulation in C++
- Performance & Power estimation
- Modular plugin-like addition of Routing/Selection strategies
- Wireless transmissions simulation

Noxim: Simulation Flow

Topology & Structure

- size (number of nodes)
- Buffers
- wireless channels

Workload

- packet size
- injection rate
- traffic distribution

Dynamic behaviour

- routing strategy
- wireless access

Simulation Runtime

- duration (cycles)
- statistics collection

. . .

Noxim: Default Scenario

Mesh of Tile nodes

- Each Tile, as aforementioned, contains a Router and a Processing Element (PE)
- Each Tile is connected to the 4 neighbors (N, S, E, W)
- Optionally, some nodes can be connected to Radio-hub allowing wireless transmissions.

Noxim: What can be done?

- Design Space Exploration
- Effect of Traffic Patterns
- Power Estimation
- Comparison Analysis

- New Routing Algorithms
- Different topologies
- Power Saving Strategies
- And so on ...

Design Space Exploration

Simulation Framework

- With Noxim it is possible to simulate application traffic starting from
 - Common traffic models
 - Input traffic table

It could be a limitation when specific real application traffic is needed

Simulation Framework: Sniper

For this purpose we get help from a different tool, a system-level simulator called Sniper.

"Sniper is a next generation parallel, high-speed and accurate x86 simulator. This multi-core simulator is based on the interval core model and the Graphite simulation infrastructure, allowing for fast and accurate simulation and for trading off simulation speed for accuracy to allow a range of flexible simulation options when exploring different homogeneous and heterogeneous multi-core architectures."

Design Space Exploration

Simulation Framework

System-level simulation

RF-NoC simulation

Applications

Application Development Trends

- Spread of applications exploiting Artificial Intelligence (AI)
 - In particular Machine Learning (ML) applications
 - Through Deep Learning (DL) techniques

Application Development Trends

Some examples using Neural Networks:

- Visual data processing
- Speech and audio processing
- Autonomous driving

Again two main domains of interest:

- High-Performance Computing
- Resource constrained devices

Neural Networks

Deep Neural Networks (DNNs)

Neural Networks: Perceptron Model

 $a = \sigma(z)$

Neural Networks: House Price Prediction

Neural Networks: House Price Prediction

Neural Networks: House Price Prediction

Neural Networks: some applications

Input(x)	Output (y)	Application	
Home features	Price	Real Estate	
Ad, user info	Click on ad? (0/1)	Online Advertising	
Image	Object (1,,1000)	Photo tagging	
Audio	Text transcript	Speech recognition	
English	Chinese	Machine translation	
Image, Radar info	Position of other cars	Autonomous driving	

Neural Networks: Perceptron Model

$$z = w^{T}x + b = \begin{bmatrix} w_{1} & w_{2} & w_{3} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + b$$
$$a = \sigma(z)$$

Neural Networks: Perceptron Model

multiply and accumulate (MAC)

$$z = w^T x + b = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

 $a = \sigma(z)$

Neural Networks: How to use them

Two modes:

- 1. Training
- 2. Inference

Popular DNN Models

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50	EfficientNet-B4
Top-5 error (ImageNet)	n/a	16.4	7.4	6.7	5.3	3.7*
Input Size	28x28	227x227	224x224	224x224	224x224	380x380
# of CONV Layers	2	5	16	21 (depth)	49	96
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M	14M
# of MACs	283k	666M	15.3G	1.43G	3.86G	4.4G
# of FC layers	2	3	3	1	1	65**
# of Weights	58k	58.6M	124M	1M	2M	4.9M
# of MACs	58k	58.6M	124M	1M	2M	4.9M
Total Weights	60k	61M	138M	7M	25.5M	19M
Total MACs	341k	724M	15.5G	1.43G	3.9G	4.4G
Reference	Lecun , <i>PIEEE</i> 1998	Krizhevsky, NeurIPS 2012	Simonyan , ICLR 2015	Szegedy, CVPR 2015	He , <i>CVPR</i> 2016	Tan , <i>ICML</i> 2019

* Does not include multi-crop and ensemble

** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT

Key metrics for an implementation

- Accuracy
- Throughput
- Latency
- Energy and Power consumption
- HW cost
- Flexibility
- Scalability

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT

Key design objectives for an implementation

- Increase Throughput and Reduce Latency
- Avoid unnecessary MACs (save cycles)
- Increase number of processing elements (PE)
- Increase PE utilization

Key design objectives for an implementation

Inference latency and energy dominated by

- Memory sub-system
- Communication sub-system

Memory traffic dominated by model parameters

Hardware implementation

Hardware implementation: Weight Compression

Selective Layers Compression Technique in Deep Neural Network Accelerators, H. Lahdhiri et al., 2020

Hardware implementation: Weight Compression

Selective Layers Compression Technique in Deep Neural Network Accelerators, *H. Lahdhiri et al., 2020*

Hardware implementation: Weight Compression

Efficient Compression Technique for NoC-based Deep Neural Network Accelerators, J. Lorandel et al., 2020

People

Salvatore Monteleone, PhD (formerly @ University of Catania) salvatoremonteleone@gmail.com

Emmanuelle Bourdel, PhD ETIS UMR 8051, CY Cergy-Paris Université, ENSEA, CNRS.

Jordane Lorandel, PhD ETIS UMR 8051, CY Cergy-Paris Université, ENSEA, CNRS.

Habiba Lahdhiri, PhD Student ETIS UMR 8051, CY Cergy-Paris Université, ENSEA, CNRS.

Maurizio Palesi, PhD University of Catania

Davide Patti, PhD University of Catania