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Introduction




Demand for computation

Mobility scenarios Computate intensive applications




Moore’s Law
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Power density problem

Power density
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The growing power density (measured in W/cm2) of Intel’s microchip processor families. (Source: Intel)



Trends in SoCs
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Trends in SoCs
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Network on Chip (NoC) Paradigm




Communication Architectures
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Communication Architectures

A Network-on-chip (NoC) is a
packet switched on-chip
communication network designed
using a layered methodology.

It "routes packets, not wires”.

5. Network-on-Chip



Network-on-Chip

NoCs are an attempt to scale down
the concepts of largescale networks,
and apply them to the embedded

System-on-Chip (SoC) domain




Network-on-Chip
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Network-on-Chip: Properties

* Regular geometry that is scalable
* Flexible QoS guarantees
* Higher bandwidth

* Reusable components
* Buffers, arbiters, routers, protocol stack

* No long global wires (or global clock tree)
* No problematic global synchronization
* GALS: Globally asynchronous, locally synchronous design

* Reliable and predictable electrical and physical properties



Network-on-Chip: Homogeneous vs. Heterogeneous
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Network-on-Chip: Homogeneous vs. Heterogeneous

_\_L_I_ * Each tile is a simple processor

‘ * Easy tile replication (scalability,
LL predictability)

LL ‘ * Less performance

 Low network resource utilization

Homogeneous



Network-on-Chip: Homogeneous vs. Heterogeneous

* |Ps can be: General purpose/DSP

processor, Memory, FPGA, |/O __I
core
* Better fit to application domain |

* Most modern systems are ‘
heterogeneous

* Topology synthesis: more difficult

* Needs specialized routing

Heterogeneous



Network-on-Chip: Performance

Factors that influence the performance of a NoC are
* Topology

* Router Architecture

* Routing Technique

* Flow Control

 Traffic Pattern



NoC Topologies

* Direct Topologies

* Indirect Topologies

* Irregular or ad-hoc network topologies D’%

mjE




Router Architecture
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Taxonomy of Routing Algorithms

Oblivious
e Deterministic
e Random

Minimal

Adaptive Non-minimal



Routing and Selection

* The routing algorithm can be represented as a routing relation R and
a selection function S

* R returns a set of paths or channels and S selects between the route
to be taken

Network Conditions
Information

Source & Destination
addresses Admissible

Output Selecti
Channels [S€IECLION I Output
Payload H :



Flow Control

* Flow Control can be viewed as a problem of

Resource allocation

Contention resolution

e Resources in form of channels, buffers and state must be allocated to
each packet

* If two packets compete for the same channel flow control can only
assign the channel to one packet, but must also deal with the other
packet



Flow Control

Flow Control can be divided into:
* Bufferless flow control: Packets are either dropped or misrouted

« Buffered flow control: Packets that cannot be routed via the desired
channel are stored in buffers



Data Units

Payload

Packet

Header Tail

Flit
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Emerging NoC Architectures




Emerging NoC tecnologies

* Optical NoC
* RF-NoC
* Hybrid NoC

Nano-antenna +
Processing Core nano-transceiver

Graphene-enabled Wireless NoC
(for control and light flows of data)

* Inherent broadcast/multicast
* Reconfigurability

Photonic NoC
(for heavy flows of data)

* Extremely high bandwidth
* Low power consumption

Optical Transmitter

Optical Waveguide
Optical Receiver



Wireless NoC Motivation

D=2(Hn-1)

Eriie = n(Eswicen + Etink)




Wireless NoC elements
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RF-NoC Architecture
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RF-NoC Architecture: OFDMA
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RF-NoC Architecture: OFDMA
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RF-NoC Architecture
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Design and Simulation




Design Space Exploration

f Application Architecture

N
|

Analysis




Design Space Exploration for NoC Architectures

Design effort

Customized standard
Infrastructure

Fixed standard
Architecture

-Explore mapping
& routing

A set of standard

Explore mapping &

I
I
I
I
I
1
I
I
: Fixed topology
1
I
I
I
-Fixed topology and routing:
I

-Explore mapping | |
L . Design quality
Increased customization level and flexibility >

Ogras et al., ASAP'05



The Mapping Problem
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Noxim: NoC Simulator

* Cycle accurate, Open Source:
* https://github.com/davidepatti/noxim

e SystemC signals level simulation in C++
* Performance & Power estimation
* Modular plugin-like addition of Routing/Selection strategies

* Wireless transmissions simulation

Catania et al., ACM TOMACS 2016


https://github.com/davidepatti/noxim

Noxim: Simulation Flow

NoC
Topology & Structure . )
. Configuration
* size (number of nodes) | ]
* Buffers |
* wireless channels NOXIM Runtime Engine
Workload N Selection G TrafﬁF Power
1 N . eneration
* packet size Strategies Models Models
¢ injection rate N Data Topologies Routing
* traffic distribution Interconnection N Analysis - Configurations  Algorithms
Dynamic behaviour
* routing strategy N N N

* wireless access Results & Statistics

Simulation Runtime NoC Instance (Power consumption, throughput, latency, ...)

* duration (cycles)
* statistics collection 1



Noxim: Default Scenario

Mesh of Tile nodes

e Each Tile, as aforementioned,
contains a Router and a
Processing Element (PE)

e Each Tile is connected to the 4
neighbors (N, S, E, W)

* Optionally, some nodes can be
connected to Radio-hub allowing
wireless transmissions.
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Noxim: What can be done?

Two main approaches

Perform Modify

simulations Source code

* Design Space Exploration * New Routing Algorithms
e Effect of Traffic Patterns * Different topologies
* Power Estimation * Power Saving Strategies

 Comparison Analysis * And soon ...
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Simulation Framework

* With Noxim it is possible to simulate application traffic starting from
 Common traffic models
* Input traffic table

It could be a limitation when specific real application traffic is needed



Simulation Framework: Sniper

For this purpose we get help from a different tool, a system-level
simulator called Sniper.

“Sniper is a next generation parallel, high-speed and accurate x86
simulator. This multi-core simulator is based on the interval core
model and the Graphite simulation infrastructure, allowing for fast and
accurate simulation and for trading off simulation speed for accuracy to
allow a range of flexible simulation options when exploring different
homogeneous and heterogeneous multi-core architectures.”

Source: http://snipersim.orqg/w/The Sniper Multi-Core Simulator



http://snipersim.org/w/The_Sniper_Multi-Core_Simulator
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Simulation Framework

System-level simulation

~

* Application/Benchmark

* Application/Benchmark
parameters

* Architectural parameters

Sniper
Simulator

—

Trace

-

Files

Params
Extraction

Params
Refinement

l

* NoC micro-architectural )

parameters
* RF Parameters

* Simulation parameters

l

Noxim
Simulator

Cycle-accurate estimation of
power and latency figures

RF-NoC simulation




Applications




Application Development Trends

* Spread of applications exploiting Artificial Intelligence (Al)

* In particular Machine Learning (ML) applications

* Through Deep Learning (DL) techniques

Al

ML



Application Development Trends

Some examples using Neural Networks:
* Visual data processing
* Speech and audio processing

* Autonomous driving

Again two main domains of interest:
* High-Performance Computing

 Resource constrained devices



Neural Networks




Deep Neural Networks (DNNs)
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Neural Networks: Perceptron Model
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Source: Deep Learning Specialization - Prof. Andrew Ng



Neural Networks: House Price Prediction
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Neural Networks: House Price Prediction

size
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Source: Deep Learning Specialization - Prof. Andrew Ng



Neural Networks: House Price Prediction
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Neural Networks: some applications

Input(x)

Output (y)

Application

Home features
Ad, user info
Image

Audio

English

Image, Radar info

Price

Click on ad? (0/1)
Object (1,...,2000)
Text transcript
Chinese

Position of other cars

Real Estate

Online Advertising
Photo tagging
Speech recognition
Machine translation

Autonomous driving

Source: Deep Learning Specialization - Prof. Andrew Ng



Neural Networks: Perceptron Model




Neural Networks: Perceptron Model

multiply and accumulate (MAC)
z=wlx+b=wix; + wyx, + wyxs +b

a=o0(z)



Neural Networks: How to use them

Two modes:

1. Training

2. Inference
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Popular DNN Models

Metrics | LeNet-5 | AlexNet ‘ \"[c{cEh ‘ Goo(th;Net ‘ ResNet-50 | EfficientNet-B4
vl

Top-5 error (ImageNet) n/a 16.4 7.4 6.7 5.3 3.7%

Input Size 28x28 227x227 224x224 224x224 224x224 380x380

# of CONV Layers 2 5 16 21 (depth) 49 96

# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M

# of MACs 283k 666M 15.3G 1.43G 3.86G 4.4G

# of FC layers 2 3 3 1 1 65**

# of Weights 58k 58.6M 124M 1M 2M 4.9M

# of MACs 58k 58.6M 124M 1M 2M 4.9M

Total Weights 60k 61M 138M 7™ 25.5M 19M

Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G

Reference Lecun, Krizhevsky, Simonyan, Szegedy, He, Tan,
PIEEE 1998 NeurIPS 2012  ICLR 2015 CVPR 2015 CVPR 2016 ICML 2019

*  Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT



Key metrics for an implementation

* Accuracy

* Throughput

* Latency

* Energy and Power consumption
* HW cost

* Flexibility

* Scalability

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT



Key designh objectives for an implementation

* Increase Throughput and Reduce Latency
* Avoid unnecessary MACs (save cycles)
* Increase number of processing elements (PE)

* Increase PE utilization

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT



Key designh objectives for an implementation

Inference latency and energy dominated by
* Memory sub-system
 Communication sub-system

Memory traffic dominated by model parameters



Hardware implementation
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Hardware implementation: Weight Compression

DNN =—¢9>

NMSE

DNN parameters

Sensitivity
Analysis

'
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EEm— . f—
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Selective Layers Compression Technique in Deep Neural Network Accelerators,

H. Lahdhiri et al., 2020



Parameter value (w)

>

Hardware implementation: Weight Compression

w=mx+q, 5
w=m x+q o Monotonic sub-sequence
17 w=m x+q
Parameter value
= LSM linear regression
nx+, w approximated parameter value
- (m,q) codeword
w=m.x+q, e e

P Parameter (x)

WWWWWWWWWWWWWW14W15WWW

Selective Layers Compression Technique in Deep Neural Network Accelerators,
H. Lahdhiri et al., 2020



Hardware implementation: Weight Compression

Layer
v v Amplitude
D 4
Fifo v l
91 \\\\ '
Cordic
Interval Atan() Je
l ¢ Diff(x1,x2) 1
Rad2Deg >
¢ x1 X2 X3 Samples
Control guantize <« Q
Unit <« af
CLayer

Efficient Compression Techniqgue for NoC-based Deep Neural Network Accelerators,
J. Lorandel et al., 2020
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