Design and Application of
Energy Efficient Emerging NoC
Architectures (E3NoC)

Salvatore Monteleone, PhD

Agenda

* Introduction

* Network on Chip (NoC) Paradigm
* Emerging NoC Architectures

* Design and Simulation

* Applications

Introduction

Demand for computation

Mobility scenarios Computate intensive applications

Moore’s Law

Iectronlcs

Cold= count and store: page 80 neil i 16 /
Dosumete‘r es laser radiation: page 93 A MeGraw Ml Pubiication ISF ,’
35th anniversary—the experts look ahead: page 99 ... e ot v 14 7 4
W lAa et I3 prann jege 100
13F ’
12

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

O=PNUWHOONDW

Fig. 2 Number of components per Integrated
fonction for minimurm cost per component
extrapolated ve time,

Power density problem

Power density

10000
[Wen'] rocket
' nozzle
. —>
1000
100 -
hot plate :
10 —> !
P6 : nuclear
4004 8080 Pentium : reactor
1] 8008 so08s |, e #] |
1970 1980 1990 2000 2010

The growing power density (measured in W/cm2) of Intel’s microchip processor families. (Source: Intel)

Trends in SoCs

107 & : | : Intel 48-Core [EEEEEE . Transistors

5 R . Prototype |57 E . (Thousands)

6 [aAMD 4-Care [il % padaliel-

10° bt e A _ : 4.7 --Patallel-App

3 : : § Opter?n .~ Performance
| | ... Single-Thread
. — Petformance
... (SpecINT)

Pentium 4

10" F- .
: — Frequency
3 [. (MHz)

10

102 _

Nuf\'\ber

10) .
7—of Cores -

10°

1975 1980 1985 1990 1995 2000 2005 2010 2015

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

Trends in SoCs

Number of Cores

512
256
128

64

- N 00 O

h

256 Cores
* 4-way SIMD FMACs @ 2.5-5 GHz \
~ +5-10 TFlops on one chip °
— » Some apps require 1 byte/flop T Manycore —
~ *Need 5-10 TB/s of off-=chip BW 1 ..7T=21tel Era
- Need 5-10 TB/s of on-chip BW too! Tiiges ®
Sarm © G120
MiT-@—Raza- @ —@ @Rock
RAW XLR Cell
Niagra @ ® @ Nehalem
Barcelona
@ @ Nehalem
Power 4’ Optergn. : X‘Box360

286 386 486 Pentum P2 p3 ps COre2 Poweré

O O O O O 000 O Hanium
Athalon

1980 1985 1990 1995 2000 2005 2010 2015

2020

Network on Chip (NoC) Paradigm

Communication Architectures

o\, ddd

1. Custom 2. Shared Bus
2999 =%
Q] @
299 -

3. Hierarchical Bus 4. Bus Matrix

Communication Architectures

A Network-on-chip (NoC) is a
packet switched on-chip
communication network designed
using a layered methodology.

It "routes packets, not wires”.

5. Network-on-Chip

Network-on-Chip

NoCs are an attempt to scale down
the concepts of largescale networks,
and apply them to the embedded

System-on-Chip (SoC) domain

Network-on-Chip

Tile

/\

— —
IP Core + Network Interface (NI) + Router (R)

Network-on-Chip: Properties

* Regular geometry that is scalable
* Flexible QoS guarantees
* Higher bandwidth

* Reusable components
* Buffers, arbiters, routers, protocol stack

* No long global wires (or global clock tree)
* No problematic global synchronization
* GALS: Globally asynchronous, locally synchronous design

* Reliable and predictable electrical and physical properties

Network-on-Chip: Homogeneous vs. Heterogeneous

e 1
HE

L

Homogeneous Heterogeneous

Network-on-Chip: Homogeneous vs. Heterogeneous

__L_I_ * Each tile is a simple processor

‘ * Easy tile replication (scalability,
LL predictability)

LL ‘ * Less performance

 Low network resource utilization

Homogeneous

Network-on-Chip: Homogeneous vs. Heterogeneous

* |Ps can be: General purpose/DSP

processor, Memory, FPGA, |/O __I
core
* Better fit to application domain |

* Most modern systems are ‘
heterogeneous

* Topology synthesis: more difficult

* Needs specialized routing

Heterogeneous

Network-on-Chip: Performance

Factors that influence the performance of a NoC are
* Topology

* Router Architecture

* Routing Technique

* Flow Control

 Traffic Pattern

NoC Topologies

* Direct Topologies

* Indirect Topologies

* Irregular or ad-hoc network topologies D’%

mjE

Router Architecture

S m »n Z

Taxonomy of Routing Algorithms

Oblivious
e Deterministic
e Random

Minimal

Adaptive Non-minimal

Routing and Selection

* The routing algorithm can be represented as a routing relation R and
a selection function S

* R returns a set of paths or channels and S selects between the route
to be taken

Network Conditions
Information

Source & Destination
addresses Admissible

Output Selecti
Channels [S€IECLION I Output
Payload H :

Flow Control

* Flow Control can be viewed as a problem of

Resource allocation

Contention resolution

e Resources in form of channels, buffers and state must be allocated to
each packet

* If two packets compete for the same channel flow control can only
assign the channel to one packet, but must also deal with the other
packet

Flow Control

Flow Control can be divided into:
* Bufferless flow control: Packets are either dropped or misrouted

« Buffered flow control: Packets that cannot be routed via the desired
channel are stored in buffers

Data Units

Payload

Packet

Header Tail

Flit

Phit

Emerging NoC Architectures

Emerging NoC tecnologies

* Optical NoC
* RF-NoC
* Hybrid NoC

Nano-antenna +
Processing Core nano-transceiver

Graphene-enabled Wireless NoC
(for control and light flows of data)

* Inherent broadcast/multicast
* Reconfigurability

Photonic NoC
(for heavy flows of data)

* Extremely high bandwidth
* Low power consumption

Optical Transmitter

Optical Waveguide
Optical Receiver

Wireless NoC Motivation

D=2(Hn-1)

Eriie = n(Eswicen + Etink)

Wireless NoC elements

N

Hub

West

| North T|Ie

AW

m B

«——— Router[[[[Jje———
L -

E E ;i Local

I South

East

ws®
.
s
«®

: DXeno MXeo

(b)

@

Xeno i Mero

(b)

RF-NoC Architecture

Cluster O Cluster 1 Cluster 15
: . S

GEL)
--~""" North Hub
H Wireless

@ o
Rout
el . West— OWeT m— East

B B
\\ﬁ\!.ocal

SR

[| | | | | | |

Cluster 16 Cluster 30 Cluster 31

RF-NoC Architecture: OFDMA

OFDM OFDMA
Frequency Frequency
) o
c c
c c
2 2
[®) STA1 STA2 STA3 STA4 S
- T - T Time Time
24 transmission 4* transmission 2* transmission 4* transmission
1* transmission 3% transmission 1* transmission 3% transmission

Source: https://www.rfglobalnet.com/doc/wi-fi-s-ofdma-challenges-make-verification-crucial-0001

https://www.rfglobalnet.com/doc/wi-fi-s-ofdma-challenges-make-verification-crucial-0001

RF-NoC Architecture: OFDMA

Binary data

bo,---/bk..

QAM
Mapping

Sub-carrier
Mapping

Complex QAM

QAM
Unmapping

symbols

Co)--.

er...

Sub-carrier
Unmapping

OFDMA
OFDM |symbols
Modulation
Npts IFFT L

Channel

OFDM
Demod. |«
Npts FFT

Orthogonal Frequency-Division Multiple Access (OFDMA) block diagram

RF-NoC Architecture

Cluster O Cluster 1 Cluster 15
: . S

GEL)
--~""" North Hub
H Wireless

@ o
Rout
el . West— OWeT m— East

B B
\\ﬁ\!.ocal

SR

[| | | | | | |

Cluster 16 Cluster 30 Cluster 31

Design and Simulation

Design Space Exploration

f Application Architecture

N
|

Analysis

Design Space Exploration for NoC Architectures

Design effort

Customized standard
Infrastructure

Fixed standard
Architecture

-Explore mapping
& routing

A set of standard

Explore mapping &

I
I
I
I
I
1
I
I
: Fixed topology
1
I
I
I
-Fixed topology and routing:
I

-Explore mapping | |
L . Design quality
Increased customization level and flexibility >

Ogras et al., ASAP'05

The Mapping Problem

1 — 2
N A
The application tasks
Concurrent _ IP are assigned and
Application Library scheduled

The application is
divided into a graph of : e
concurrent tasks

T1

T2 | |
i == |
3 ycPU2
> | 3 |
T4 i L ' Decide to which tile
Maobin each selected IP should
! —_—" : NPpHp 5 be mapped such that
T6 T ! / DSP1 ! (NP-Hard) the metrics of interest
Graph of concurrent tasks S = | are optimized

Noxim: NoC Simulator

* Cycle accurate, Open Source:
* https://github.com/davidepatti/noxim

e SystemC signals level simulation in C++
* Performance & Power estimation
* Modular plugin-like addition of Routing/Selection strategies

* Wireless transmissions simulation

Catania et al., ACM TOMACS 2016

https://github.com/davidepatti/noxim

Noxim: Simulation Flow

NoC
Topology & Structure .)
. Configuration
* size (number of nodes) |]
* Buffers |
* wireless channels NOXIM Runtime Engine
Workload N Selection G TrafﬁF Power
1 N . eneration
* packet size Strategies Models Models
¢ injection rate N Data Topologies Routing
* traffic distribution Interconnection N Analysis - Configurations Algorithms
Dynamic behaviour
* routing strategy N N N

* wireless access Results & Statistics

Simulation Runtime NoC Instance (Power consumption, throughput, latency, ...)

* duration (cycles)
* statistics collection 1

Noxim: Default Scenario

Mesh of Tile nodes

e Each Tile, as aforementioned,
contains a Router and a
Processing Element (PE)

e Each Tile is connected to the 4
neighbors (N, S, E, W)

* Optionally, some nodes can be
connected to Radio-hub allowing
wireless transmissions.

Hub

West |

North

Tile

I\

1 Wireless

m B
RouterII[}}

= B

Local

East

South

Noxim: What can be done?

Two main approaches

Perform Modify

simulations Source code

* Design Space Exploration * New Routing Algorithms
e Effect of Traffic Patterns * Different topologies
* Power Estimation * Power Saving Strategies

 Comparison Analysis * And soon ...

Design Space Exploration

f Application Architecture

N
|

Analysis

Simulation Framework

* With Noxim it is possible to simulate application traffic starting from
 Common traffic models
* Input traffic table

It could be a limitation when specific real application traffic is needed

Simulation Framework: Sniper

For this purpose we get help from a different tool, a system-level
simulator called Sniper.

“Sniper is a next generation parallel, high-speed and accurate x86
simulator. This multi-core simulator is based on the interval core
model and the Graphite simulation infrastructure, allowing for fast and
accurate simulation and for trading off simulation speed for accuracy to
allow a range of flexible simulation options when exploring different
homogeneous and heterogeneous multi-core architectures.”

Source: http://snipersim.orqg/w/The Sniper Multi-Core Simulator

http://snipersim.org/w/The_Sniper_Multi-Core_Simulator

Design Space Exploration

f Application Architecture

N
|

Analysis

Simulation Framework

System-level simulation

~

* Application/Benchmark

* Application/Benchmark
parameters

* Architectural parameters

Sniper
Simulator

—

Trace

-

Files

Params
Extraction

Params
Refinement

l

* NoC micro-architectural)

parameters
* RF Parameters

* Simulation parameters

l

Noxim
Simulator

Cycle-accurate estimation of
power and latency figures

RF-NoC simulation

Applications

Application Development Trends

* Spread of applications exploiting Artificial Intelligence (Al)

* In particular Machine Learning (ML) applications

* Through Deep Learning (DL) techniques

Al

ML

Application Development Trends

Some examples using Neural Networks:
* Visual data processing
* Speech and audio processing

* Autonomous driving

Again two main domains of interest:
* High-Performance Computing

 Resource constrained devices

Neural Networks

Deep Neural Networks (DNNs)

- K ‘%ﬁ *.@N»&
¥ w“w"‘w w A

Input Hidden I ayer Output

Xl

Neural Networks: Perceptron Model

Q)
1l
<<

X1
X2
X3

Zz=wlx+b=[w1 Wz Wws3] + b

a=o0(z)

Source: Deep Learning Specialization - Prof. Andrew Ng

Neural Networks: House Price Prediction

N ctified

/ inear

) nit

L X

= . size —*O—> price

X X Yy

>
Size

Source: Deep Learning Specialization - Prof. Andrew Ng

Neural Networks: House Price Prediction

size

family size

bedrooms
walkability . price
ZIP code —
school quality V
wealth
X

Source: Deep Learning Specialization - Prof. Andrew Ng

Neural Networks: House Price Prediction

size

bedrooms

ZIP code

wealth

size

family size
bedrooms
walkability

ZIP code

school quality

X 1 wealth
X3

Yy
X3
X4

Source: Deep Learning Specialization - Prof. Andrew Ng

Neural Networks: some applications

Input(x)

Output (y)

Application

Home features
Ad, user info
Image

Audio

English

Image, Radar info

Price

Click on ad? (0/1)
Object (1,...,2000)
Text transcript
Chinese

Position of other cars

Real Estate

Online Advertising
Photo tagging
Speech recognition
Machine translation

Autonomous driving

Source: Deep Learning Specialization - Prof. Andrew Ng

Neural Networks: Perceptron Model

Neural Networks: Perceptron Model

multiply and accumulate (MAC)
z=wlx+b=wix; + wyx, + wyxs +b

a=o0(z)

Neural Networks: How to use them

Two modes:

1. Training

2. Inference

O
N AN

sle]ele
QQOC
NKRL T

ORI
V\A‘\/Av/

Popular DNN Models

Metrics | LeNet-5 | AlexNet ‘ \"[c{cEh ‘ Goo(th;Net ‘ ResNet-50 | EfficientNet-B4
vl

Top-5 error (ImageNet) n/a 16.4 7.4 6.7 5.3 3.7%

Input Size 28x28 227x227 224x224 224x224 224x224 380x380

of CONV Layers 2 5 16 21 (depth) 49 96

of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M

of MACs 283k 666M 15.3G 1.43G 3.86G 4.4G

of FC layers 2 3 3 1 1 65**

of Weights 58k 58.6M 124M 1M 2M 4.9M

of MACs 58k 58.6M 124M 1M 2M 4.9M

Total Weights 60k 61M 138M 7™ 25.5M 19M

Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G

Reference Lecun, Krizhevsky, Simonyan, Szegedy, He, Tan,
PIEEE 1998 NeurIPS 2012 ICLR 2015 CVPR 2015 CVPR 2016 ICML 2019

* Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT

Key metrics for an implementation

* Accuracy

* Throughput

* Latency

* Energy and Power consumption
* HW cost

* Flexibility

* Scalability

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT

Key designh objectives for an implementation

* Increase Throughput and Reduce Latency
* Avoid unnecessary MACs (save cycles)
* Increase number of processing elements (PE)

* Increase PE utilization

Source: How to Evaluate Efficient Deep Neural Network Approaches - Prof. V. Sze, MIT

Key designh objectives for an implementation

Inference latency and energy dominated by
* Memory sub-system
 Communication sub-system

Memory traffic dominated by model parameters

Hardware implementation

Processing Element Main Memory

. Memory interface : Input Feature Map Filters
------ On-chip traffic |
------ Off-chip traffic D |
------------- I/ é P I
LT R |
:,' PR :“\(‘ " |
y [:
=
7 . - ': 1 I
r = * .. ! I -
N B B e o 5 I IR =8
. ' Ve E ‘\s l
L ST T AT
' ! .' o l
N\ O
y i Y ' 1
74 | ol
e e o o e e e e e e e - e

— — o o o e e s

Hardware implementation: Weight Compression

DNN =—¢9>

NMSE

DNN parameters

Sensitivity
Analysis

'

Sensitivity
Levels Scores
(SL) Scores (SC)
EEm— . f—
Computation

Parameters set size

*

max

Layers
Compression

—p1 Compressed

!

2

Parameters

)

Selective Layers Compression Technique in Deep Neural Network Accelerators,

H. Lahdhiri et al., 2020

Parameter value (w)

>

Hardware implementation: Weight Compression

w=mx+q, 5
w=m x+q o Monotonic sub-sequence
17 w=m x+q
Parameter value
= LSM linear regression
nx+, w approximated parameter value
- (m,q) codeword
w=m.x+q, e e

P Parameter (x)

WWWWWWWWWWWWWW14W15WWW

Selective Layers Compression Technique in Deep Neural Network Accelerators,
H. Lahdhiri et al., 2020

Hardware implementation: Weight Compression

Layer
v v Amplitude
D 4
Fifo v l
91 \\\\ '
Cordic
Interval Atan() Je
l ¢ Diff(x1,x2) 1
Rad2Deg >
¢ x1 X2 X3 Samples
Control guantize <« Q
Unit <« af
CLayer

Efficient Compression Techniqgue for NoC-based Deep Neural Network Accelerators,
J. Lorandel et al., 2020

People

Salvatore Monteleone, PhD
(formerly @ University of Catania) ~ Emmanuelle Bourdel, PhD
salvatoremonteleone@gmail.com ETIS UMR 8051, CY Cergy-Paris Université, ENSEA, CNRS.

Jordane Lorandel, PhD
ETIS UMR 8051, CY Cergy-Paris Université, ENSEA, CNRS.

Habiba Lahdhiri, PhD Student
ETIS UMR 8051, CY Cergy-Paris Université, ENSEA, CNRS.

Maurizio Palesi, PhD
University of Catania

Davide Patti, PhD
University of Catania

